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The accuracy of traditional multispectral maximum-likelihood image classifica-

tion is limited by the multi-modal statistical distributions of digital numbers from

the complex, heterogenous mixture of land cover types in urban areas. This work

examines the utility of local variance, fractal dimension and Moran’s I index

of spatial autocorrelation in segmenting multispectral satellite imagery with the

goal of improving urban land cover classification accuracy. Tools available in

the ERDAS ImagineTM software package and the Image Characterization and

Modeling System (ICAMS) were used to analyse Landsat ETM + imagery of

Atlanta, Georgia. Images were created from the ETM + panchromatic band

using the three texture indices. These texture images were added to the stack of

multispectral bands and classified using a supervised, maximum likelihood

technique. Although each texture band improved the classification accuracy over

a multispectral only effort, the addition of fractal dimension measures is

particularly effective at resolving land cover classes within urbanized areas, as

compared to per-pixel spectral classification techniques.

1. Introduction

The synoptic view afforded by satellite imagery makes this data a potentially valuable

resource for regional assessments of the biophysical impacts of urban sprawl.

However, traditional multispectral image classification techniques have proven to be

ineffective at identifying built-up areas (particularly at the urban-rural fringe), due to

the heterogeneity of urban land covers (Johnsson 1994). The multi-modal statistical

distributions of land cover types at the urban fringe limits the effectiveness of

traditional multispectral maximum-likelihood classifiers, since suburban residential

areas form a complex mosaic of trees, lawns, roofs, concrete driveways, and asphalt

roadways. These details are imaged as mixed pixels by older, lower resolution sensors

such as the Landsat Multispectral Scanner (MSS), whereas in newer, high-resolution

commercial satellite imagery, urban areas form a complex surface of brightness values

that could be viewed as a more detailed subset of the traditional notion of land cover.

Analytical techniques in remote sensing that explicitly consider the spatial

structure of imaged features have primarily been measures of image texture (Chen
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and Chen 1999). Grey-tone spatial-dependence or co-occurrence matrices (Haralick

et al. 1973) provide the basis for a number of measures including range, variance,

standard deviation, entropy, or uniformity within a moving window. These

measures have been shown (Sali and Wolfson 1992, Carr and Miranda 1998)

to be a potentially useful means for image classification. Zhang (1999) and

Karathanassi et al. (2000) have evaluated the utility of co-occurrence matrices in

urban land cover classification and have found that including textural information

with spectral data generally improves classification accuracy. This work examines

the utility of local variance, fractal dimension, and Moran’s I index of spatial

autocorrelation in segmenting Landsat 7 Enhanced Thematic Mapper multispectral

imagery. The effectiveness of these indices were evaluated as additional layers in a

supervised, maximum-likelihood image classification. Tools available in the

ERDAS Imagine software package and the Image Characterization and Modeling

System (ICAMS) (Quattrochi et al. 1997) were used to compute these local indices

of texture.

2. Methods

2.1 Study area

Atlanta, Georgia, located in the southeastern United States (figure 1), is growing

rapidly, both in terms of population and urbanized area. In the period from 1970 to

2000, Atlanta’s population grew 133%, from approximately 1.8 million to over 4.1

million residents. Kolankiewicz and Beck (2001) found that Atlanta’s urban area

grew by 1817 square kilometres from 1970 to 1990, not only due to the increase in

population, but also due to land use decisions that determine per capita land

consumption. With few natural or anthropogenic barriers to continued growth,

Atlanta is poised to spread well beyond its present urbanized area. Satellite remote

sensing provides a unique viewpoint to track this explosive growth.

Figure 1. Location map of the southeastern United States showing Atlanta Regional
Commission 13-county landcover study area.
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2.2 Software

The Image Characterization and Modeling System (ICAMS) is an integrated

software package designed to provide specialized spatial analytical functions for

visualizing and interpreting remote sensing data. The main functions contained in

the ICAMS package include: fractal, variogram, spatial autocorrelation, wavelet

and texture analysis. In its original form, ICAMS runs as an extension to the

Intergraph-MGE and the Arc/Info Unix and Windows applications (Quattrochi

et al. 1997, Lam et al. 1998). A stand alone C + + based Windows application and

a multi-platform Java version also incorporate the fractal, wavelet, spatial

autocorrelation, and other analytical functions (Zhao 2001). ICAMS can compute

fractal dimension and spatial autocorrelation indices either in a global (whole image

or major subset) or local fashion using a moving window filter.

The image file format conversions, georectifications, image classification, and

accuracy assessment procedures used in this analysis were performed with the

ERDAS ImagineTM version 8.6 (Leica 2002) image processing software package.

2.3 Data types and sources

Landsat 7 Enhanced Thematic Mapper (ETM +) panchromatic and multispectral

images from October 28, 1999 were used in this study. Two adjacent scenes were

mosaiced to create an image that included the Atlanta metropolitan area and

surrounding countryside. The 416865001 pixel multispectral image included the six

visible and reflective infrared bands. The 8351610017 pixel panchromatic image

was analysed using local variance, fractal dimension, and Moran’s I indices. The

slightly larger spatial extent of the panchromatic image allowed moving window

computations of texture throughout the entire area covered by the multispectral

image. The panchromatic and multispectral Landsat images used in this analysis

were registered to base map data (described in the accuracy assessment subsection)

Figure 2. Land cover map of the Atlanta, Georgia area.
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in Universal Transverse Mercator Zone 16 North coordinates using a second order

polynomial model with nearest neighbour resampling.

2.4 Indices of spatial complexity

2.4.1 Local variance. A simple index of spatial complexity is the variance of grey

scale values measured in a moving window. Most image analysis software packages

include this method as a texture measure, with window sizes ranging from 363 up

to 767 or larger. In this method, the real number representing the variance of the

pixel values within the window is recorded for the window’s central pixel location,

the window steps over a predefined number of pixels and the variance of this

window is recorded in the next pixel location. Woodcock and Strahler (1987) plotted

local variance versus pixel sizes for an original image and several lower resolution,

degraded versions of the original. These plots revealed the spatial structure of

forested, urban, and other uniform scenes, and provided insights on the optimal

resolution and image scale needed to analyse certain types of land covers.

2.4.2 Fractal dimension. Fractal analysis (Mandelbrot, 1983) provides tools for

measuring the geometric complexity of imaged objects. In Euclidean space, a point

has an integer topological dimension of zero, a line is one-dimensional (1D), an area

has two dimensions and a volume three. The fractal dimension (D), however, is a

non-integer value that, in Mandelbrot’s (1983) definition for fractals, exceeds the

topological dimension as the form of a point pattern, a line, or an area feature grows

more geometrically complex. The fractal dimension of a point pattern can be any

value between zero and one, a curve, between one and two, and a surface, between

two and three. Increasing the geometrical complexity of a perfectly flat 2D surface

(D 5 2.0) so that the surface begins to fill a volume, results in D values approaching

3.0. Fractal techniques have been used to analyse the form and function of cities

(Batty and Longley 1994), and have been an active area of research in machine

vision (Pentland 1984; Chen et al. 1997).

There are many ways of computing the fractal dimension of a raster dataset,

including the isarithm or walking-divider method, the triangular prism method, box-

counting, and methods using semi-variograms (Quattrochi et al. 1997). This work

uses the triangular prism method (Clarke 1986, Jaggi et al. 1993, Lam and DeCola

1993) as modified by Lam et al. (2002). This method constructs triangles by

averaging the z-values (which in this case are the digital numbers) for sets of four

adjacent pixels. The z-values for each pixel are used to establish heights at each

corner, and triangles are formed by connecting these corner values to the height

representing the mean value of the four pixels at the centre of the array (figure 3).

Figure 4(a) shows an example 767 array of pixel values. In step 1 (figure 4(b)), the

areas of all triangles at the tops of prisms consisting of 262 arrays of pixels are

computed. The areas of the triangular ‘facets’ of the prisms are then summed to

represent the total step 1 surface area. The algorithm then steps to 363 prisms

(figure 4(c)), with the centre height corresponding to the average digital number at

the four corners. The algorithm continues to increase the pixel size and compute the

triangular prism areas until the entire surface is calculated as a single composite

prism. The logarithm of the total of all the prism facet areas at each step is plotted

against the logarithm of the prism dimension at each step. The fractal dimension is

calculated by performing a least squares regression on these plotted points. The

regression slope B is used to determine the fractal dimension D, where D52–B.
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Noisy images with a ‘rough’ texture have widely different grey scale values closely

adjacent and the amount of generalization that occurs as the facets get bigger is

great, so that the slope of the log (prism facet area)/log (prism dimension) is steeply

negative and the D value approaches 3.0. Smooth images have grey scale values that

change slowly with distance, so the prism facet areas change relatively less with

increasing prism dimension, the slope of the regression is near zero, and the D value

approaches 2.0.

2.4.3 Moran’s I. Spatial autocorrelation of raster images can be characterized by

statistics such as Moran’s I (Cliff and Ord 1973), which reflect the differing spatial

structures of the smooth and rough surfaces. Moran’s I is calculated from the

following formula:

I(d)~
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i
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where wij is the weight at distance d, so that wij 5 1 if point j is within distance d from

point i, otherwise wij 5 0 (rook’s case adjacencies were assumed in the algorithm

used here, limiting comparisons to pixels that share an edge). The z’s are pixel digital

numbers, and W is the sum of all the weights where i ? j. As shown in figure 5,

Moran’s I varies from + 1.0 for perfect positive correlation (a clumped pattern) to

0.0 for a random pattern, to 21.0 for perfect negative correlation (a chequerboard

pattern) (Goodchild 1980).

2.5 Texture analysis

In this example, texture images were computed from the 15 m spatial resolution

Landsat ETM + panchromatic band using a 21621 pixel moving window

incremented by two pixels at each step of the window. When the window reached

the last position at which the entire window could be evaluated, the window skipped

a row and started at the beginning of the following row in the image. This two-pixel

increment between rows and columns produced a 30 m resolution texture image. The

Figure 3. Construction of a triangular prism.
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Figure 5. Example values of Moran’s I index of spatial autocorrelation. (a) Clumped
pattern I<+1.0; (b) Random pattern I<0.0; (c) Dispersed pattern I<21.0.

Figure 4. Computation of facet areas. (a) Example 767 pixel image; (b) Step 1 – 262
prisms; (c) Step 2 – 363 prisms; (d ) Step 3 – 464 prisms.
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real number local variance, Moran’s I and fractal dimension values were converted

to eight bit unsigned intergers using a linear stretch to make them compatible with

the other multispectral bands.

In texture analysis, the size of the analysis window has an important impact on

the ability to segment and classify an image (Marceau et al. 1990). For this

investigation, several window sizes ranging from 767 pixels up to 29629 pixels

were tried. Although the local variance technique performed relatively well at small

window sizes, the Moran’s I and fractal dimension measurements required larger

windows to yield a stable result. The rook’s case adjacent weighting in the Moran’s I

algorithm limits accuracy for window sizes smaller than 11611 pixels. The

regression procedure in the fractal dimension algorithm also places a lower limit on

the size of the moving window. Through experimentation with unsupervised

clustering of the texture images, it was found that a 21621 window size yielded

images that most closely match the reference data land cover patterns. This window

size was used in this analysis for all of the methods (although the local variance

method performed slightly better at a 767 window size).

With an arithmetic increase in pixel size for each step, a 21621 pixel moving

window size allows ten computations of the log (prism area)/log (pixel size)

expression per window, yielding a fairly stable regression line for computing fractal

dimension. Although the edge effects are reduced using smaller window sizes, small

windows have fewer points in the fractal dimension regression and less stable

Moran’s I results, yielding noisy output images.

2.6 Image classification

Table 1 shows the land cover categories that were used in this analysis. These

categories are based the USGS Anderson Level I land cover classification (Anderson

et al. 1976), with the urban category subdivided into high and low intensity groups.

The 8-bit local variance, fractal dimension, and Moran’s I images were added to the

stack of visible and reflective infrared bands. Spectral signatures were derived for

the five land cover categories using the training sites depicted in figure 6. The

signatures included only the visible and reflective infrared bands in the case of the

multispectral only classification. Each of the texture images were added in turn to

the signatures for the multispectral + local variance, multispectral + fractal dimen-

sion, and multispectral + Moran’s I classifications.

Example panchromatic images from these training sites are shown in figure 7. The

large commercial buildings and other extensive features in the high intensity urban

category (figure 7(a)) led to a coarse texture, with individual objects often composed

of several pixels. Low intensity urban areas (figure 7(b)) were complex collections of

Table 1. Land cover classification categories.

Category Land cover Land use classes

1 Low intensity urban Single/multifamily residential, mobile home parks
2 High intensity urban Commercial, intensive institutional, industrial,

transportation
3 Pasture/grassland Agriculture, orchards, parks
4 Forest Deciduous/evergreen/mixed forest, forested wet-

lands
5 Water Lakes, ponds, rivers, reservoirs
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Figure 6. Training site locations.

(a) (b) (c)

(d ) (e)

Figure 7. Example training site landcovers. (a) High intensity urban; (b) Low intensity
urban; (c) Pasture/grassland; (d ) Forest; (e) Water.
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tree cover, street networks, and buildings. Pasture and grasslands (figure 7(c)) had a

relatively smooth texture, often interspersed with shrubs and trees. Forests

(figure 7(d )) were relatively uniform, but rough textured areas. Water areas

(figure 7(e)) were smooth, dark, featureless areas with irregular outlines.

2.7 Accuracy Assessment

Reference data was acquired from the Atlanta Regional Commission (ARC) in the

form of the LandPro99 GIS theme layer, which forms part of the Atlanta Regional

Information System (ARIS)(ARC 2002). The geographic extent of this map (shown

in figure 1) is a 13-county area which includes ARC’s 10 counties, plus the adjacent

counties of Forsyth, Paulding, and Coweta. This landuse/cover ArcViewTM

shapefile was created by on-screen photo-interpretation and digitizing of ortho-

rectified aerial photography. The primary sources for this mapping effort were 1999

colour aerial photography that was obtained at a scale of 1:14,000 and digitized with

a 1.22 metre pixel resolution, and 1999 colour infrared (CIR) US Geological Survey

(USGS) digital orthophoto quarter quads (DOQQs) with one meter pixel resolution.

Both sources of imagery were used to delineate landcover polygons, which were in

turn aligned to the Georgia Department of Transportation digital line graph street

centerlines. Polygons within the LandPro99 land cover map were recategorized and

dissolved to correspond to the five class land cover classification scheme (table 1 and

figure 2).

The minimum mapping unit standard for this database is generally five acres (2.02

hectares), with varying exceptions based on category and context. Smaller features

in the intensive institutional (mostly elementary schools) category, commercial

features, cemeteries, and reservoirs (impoundments) have been intentionally

delineated in some cases throughout the region. This minimum mapping unit

naturally leads to a mismatch of spatial scales between the 30 m square pixels in the

classified images and the reference data. To partially overcome this, the accuracy

assessment procedure in ERDAS ImagineTM included a 565 pixel majority filter

around each accuracy point. If the pixels surrounding the accuracy assessment point

have a more frequently occurring land cover category, the mode land cover in the

565 window was used for accuracy assessment purposes.

1000 randomly selected points in the 13-county Atlanta Regional Commission

area were used to assess the accuracy of the ETM + image using the LandPro99

(ARC 2002) GIS land cover map. This number of accuracy assessment points

ensured that none of the land cover categories contained less than the recommended

50 points (Congalton and Green 1998).

3. Results and discussion

Images formed from local variance, Moran’s I, and fractal dimension values were

linearly stretched and rescaled to 8-bit unsigned integers to be compatible with the

other spectral bands. Figure 8 shows the three texture images. In the local variance

(figure 8(a)) image, Atlanta’s urban core shows up as a lighter area indicating higher

local variance values. The large lakes to the northeast and northwest of the city are

visible as dark areas of low variance outlined by white lines indicating high areas of

variance at the lake shores. Figure 8(b), the fractal dimension image shows the

developed area of the city as darker areas of intermediate fractal dimension values.

The lakes are clearly visible, and the forests and grasslands in the city hinterlands are
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a complex mix of high and low fractal dimensions. The Moran’s I image does not

clearly delineate the city, and it appears to mainly highlight topography and

shadows. The descriptive statistics of these images are shown in table 2. The narrow

range of values in the Moran’s I image meant that textures that appear quite

different have roughly similar Moran’s I values, thus limiting this technique’s ability

to distinguish between land covers.

Table 3 shows the results of the accuracy assessment of the four classified images.

In the multispectral only classification (table 3a), the errors of omission (producer’s

accuracy) in the low intensity urban category were the major factor limiting overall

accuracy. Less than 30% of the 249 low intensity urban accuracy points were

classified correctly with most of the misidentification being in the forest category.

Errors of commission (user’s accuracy) for forest were therefore high, and the

multispectral only classification also had some difficulty resolving forest from

pasture/grassland.

Adding local variance to the multispectral bands improved the classification of

the high intensity urban class (table 3b). This strategy also had the fewest number of

errors of omission for the water category, although it also tended to incorrectly

identify many other accuracy points as water. Water’s smooth texture and uniformly

low digital numbers in the multispectral bands led to the classification of dark,

featureless areas as water. Although local variance also helped in the identification of

low intensity urban areas, the producer’s accuracy for this class was still less than 40%.

The highest overall percent correctly classified (PCC) and KHAT statistics were

obtained by adding the fractal dimension band to the multispectral layers. Of

particular note is the greatly improved producer’s accuracy for the low intensity

urban class. The fractal dimension algorithm was best able to integrate brightness

values within the 21621 moving window to separate low intensity urban areas from

(a) (b) (c)

Figure 8. Texture images derived from ETM + panchromatic image. (a) Local variance;
(b) Fractal dimension; (c) Moran’s I.

Table 2. Descriptive statistics for computed texture layers.

Layer Mean Standard deviation Min Max

Local variance 39.8 37.76 0.18 1935.8
Fractal dimension 2.7 0.09 1.9 3.66
Moran’s I 0.89 0.05 0.84 0.99
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forests. However, fractal dimension was not as effective at separating low from high

intensity urban, thus leading to a lower user’s accuracy for these classes as compared

to the local variance method.

The Moran’s I and multispectral method improved the overall PCC and KHAT

statistics only slightly over the multispectral only method. This method was able to
improve the producer’s accuracy for pasture/grassland as compared to the

multispectral only strategy, by reducing the number of points that were

mididentified as forest.

Table 4 compares the estimates of total area in the 13-county Landpro99 region

for each landcover type as represented in a rasterized version of Landpro99 and each

of the classification schemes (multispectral only, multispectral + local variance,
multispectral + fractal dimension, and multispectral + Moran’s I). The closest

estimate to these benchmark areas was obtained through the multispectral + fractal

Table 3. Confusion matrices for supervised classification of multispectral bands with fractal
layers.

a. Multispectral only Reference land cover

Classified land
cover

High
intensity

urban Pasture Water

Low
intensity

urban Forest
Class.
total

User’s
accuracy

(%) KHAT

High intensity
urban

118 4 1 10 5 138 85.51 0.828

Pasture/grassland 5 105 1 19 14 144 72.92 0.670
Water 2 1 72 6 2 83 86.75 0.855
Low intenisty

urban
22 2 2 74 6 106 69.81 0.598

Forest 9 67 11 140 302 529 57.09 0.361
Reference totals 156 179 87 249 329 1000
Producer’s

accuracy (%)
75.64 58.66 82.76 29.72 91.79

PCC KHAT
67.10% 0.558

b. Local variance + multispectral Reference land cover

Classified land
cover

High
intensity

urban Pasture Water

Low
intensity

urban Forest
Class.
total

User’s
accuracy

(%) KHAT

High intensity
urban

128 2 1 4 5 140 91.43 0.989

Pasture/grassland 10 130 4 14 17 175 74.29 0.687
Water 4 3 75 4 7 93 80.65 0.788
Low intensity

urban
7 2 0 98 7 114 85.96 0.813

Forest 7 42 7 129 293 478 61.30 0.423
Reference totals 156 179 87 249 329 1000
Producer’s

accuracy (%)
82.05 72.63 86.21 39.36 89.06

PCC KHAT
72.40% 0.634
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d. Moran’s I + multispectral Reference land cover

Classified land
cover

High
intensity

urban Pasture Water

Low
intensity

urban Forest
Class.
total

User’s
accuracy

(%) KHAT

High intensity
urban

117 2 1 9 3 132 88.64 0.865

Pasture/grassland 15 144 6 33 22 220 65.45 0.579
Water 1 0 72 6 1 80 90.00 0.891
Low intensity

urban
17 2 2 66 8 95 69.47 0.594

Forest 6 31 6 135 295 473 62.37 0.439
Reference totals 156 179 87 249 329 1000
Producer’s

accuracy (%)
75.00 80.45 82.76 26.51 89.67

PCC KHAT
69.40% 0.594

Table 4. Land cover areas (in square kilometres) for the LandPro99 map and classified
images.

LandPro99 Multispectral Multispectral Multispectral Multispectral
Land cover 30 m raster only + local var. + fractal + Moran’s I

High intensity
urban

1100.3 1016.1 1068.8 1028.0 1028.0

Pasture 1409.4 1609.7 1764.3 1492.1 2171.2
Water 175.2 349.1 403.5 291.6 320.5
Low intensity

urban
3512.5 1764.3 1854.3 2920.2 1640.2

Forest 4245.3 5712.6 5360.8 4719.8 5291.9
Total 10442.7 10451.7 10451.7 10451.7 10451.7

c. Fractal + multispectral Reference land cover

Classified land
cover

High
intensity

urban Pasture Water

Low
intensity

urban Forest
Class.
total

User’s
accuracy

(%) KHAT

High intensity
urban

115 3 1 9 4 132 87.12 0.847

Pasture/grassland 7 112 3 14 15 151 74.17 0.685
Water 0 0 71 4 1 76 93.42 0.928
Low intensity

urban
27 9 0 181 15 232 78.02 0.707

Forest 7 55 12 41 294 409 71.88 0.581
Reference totals 156 179 87 249 329 1000
Producer’s

accuracy (%)
73.72 62.57 81.61 72.69 89.36

PCC KHAT
77.30% 0.699
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dimension classification for all of the land cover classes except for high intensity

urban, for which multispectral + local variance had the closest estimate. However, all

of the areal estimates of land cover obtained from classified imagery underestimated

the low and high intensity urban classes and overestimated the water, forest, and

pasture/grassland areas.

The spectral signature of water is so different from the other land cover classes,

that even a relatively small patch of water in a 30 m instantaneous field of view led

the whole pixel to be classified as water in many cases. Since 290 of the 1084 lakes

and reservoirs in the LandPro 99 land cover map are less than the 2.02 hectare

(5 acre) minimum mapping unit for this data set, it is probable that the 565

majority window used in the accuracy assessment led to underestimations of the

errors of commission and inflated the user’s accuracies in table 3.

Small structures sometimes led to a parcel being categorized as low or high intensity

urban in the LandPro99 map, even though a large part of the parcel was actually

covered by grass or forest. This landcover vs landuse conundrum led to the systematic

overestimation of vegetated land cover areas by the image classification techniques.

4. Conclusions and notes for further research

Texture measures such as local variance, fractal dimension and Moran’s I can

combine synergistically with traditional multispectral classification techniques

to yield more accurate results. Adding fractal dimension information to the

multispectral bands is particularly helpful in resolving low density residential areas

from surrounding undeveloped forest and grasslands. The overall percentage

of correctly classified points increased from 67.1% to 77.3% with the addition

of fractal dimension, with most of the improvement occurring in the forest and

low intensity urban classes. Local variance performed better than Moran’s I, but

relatively poor classification accuracy in the forest and low intensity urban

landcover classes kept overall percent correctly classified and KHAT indices below

that of the multispectral with fractal dimension strategy.

The results presented here show some promise, but much work remains in order

to better utilize these indices of image complexity. Texture is very scale-dependent,

and the size of the moving window combined with the resolution of the imagery

plays a big part in determining what features are highlighted by these techniques.

Texture also involves directionality—a key means for distinguishing between

textures is the orientation of the pattern. In the future we hope to include anisotropy

as a means of distinguishing land covers and we hope to explore the potential

benefits of other texture measurement algorithms.
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