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ABSTRACT 
 

Hurricane Hugo struck the South Carolina coast on the night of September 21, 

1989 at Sullivan’s Island, where it was considered a Category 4 on the Saffir-Simpson 

scale when the hurricane made landfall (Hook et al. 1991).  It is probably amongst the 

most studied and documented hurricanes in the United States (USDA Southern Research 

Station Publication 1996).  There has been a Landsat TM based Hugo damage assessment 

study conducted by Cablk et al. (1994) in the Hobcaw barony forest.  This study 

attempted to assess for a different and smaller study area near the Wambaw and Coffee 

creek swamp.  The main objective of this study was to compare the results of the 

traditional post-classification method and the triangular prism fractal method (TPSA 

hereafter, a spatial method) for change detection using Landsat TM data for the Francis 

Marion National Forest (FMNF hereafter) before and after Hurricane Hugo’s landfall (in 

1987 and 1989).  Additional methods considered for comparison were the principal 

component analysis (PCA hereafter), and tasseled cap transform (TCT hereafter).   

 Classification accuracy was estimated at 81.44% and 85.71% for the hurricane 

images with 4 classes: water, woody wetland, forest and a combined cultivated row 

crops/transitional barren class.  Post-classification was successful in identifying the 

Wambaw swamp, Coffee creek swamp, and the Little Wambaw wilderness as having a 

gain in homogeneity.  It was the only method along with the local fractal method, which 

gave the percentage of changed land cover areas.  Visual comparison of the PCA and 

TCT images show the dominant land cover changes in the study area with the TCT in 

general better able to identify the features in all their transformed three bands.  The post-

classification method, PCA, and the TCT brightness and greenness bands did not report 

 xii



 xiii

increase in heterogeneity, but were successful in reporting gain in homogeneity.  The 

local fractal TPSA method of a 17x17 moving window with five arithmetic steps was 

found to have the best visual representation of the textural patterns in the study area.  The 

local fractal TPSA method was successful in identifying land cover areas as having the 

largest heterogeneity increase (a positive change in fractal dimension difference values) 

and largest homogeneity increase (a negative change in fractal dimension difference 

values).  The woody wetland class was found to have the biggest increase in homogeneity 

and the forest class as having the biggest increase in heterogeneity, in addition to 

identifying the three swamp areas as having an overall increased homogeneity. 



CHAPTER 1:  INTRODUCTION 
 

Coastal wetland forests are an important part of the Earth ecosystems.  They 

contribute a disproportionate share of human settlement sites primarily due to transport 

availability through land and waterways, and easy access to food and water (Michener et 

al. 1997).  Wetlands include various types of swamps, marshes, beaches, and shorelines 

and are shaped amongst other things by severe natural phenomena like the occurrence of 

hurricanes and tropical storms (Michener et al. 1997).  Lugo (2000) summarizes the 

effects and outcomes of hurricanes on Caribbean forests, which can be applicable to 

coastal wetland forests. 

• Sudden and massive tree mortality;  
• delayed patterns of tree mortality;  
• alternative methods of forest regeneration;  
• opportunities for a change in successional direction;  
• high species turnover and opportunities for species change in forests;  
• diversity of age classes; faster biomass and nutrient turnover;  
• species substitutions and changes in turnover time of biomass and 

nutrients;  
• lower aboveground biomass in mature vegetation;  
• carbon sinks;  
• selective pressure on organisms; and  
• convergence of community structure and organization. 

 
Coch (1994) states that hurricane wind damage occurs on different spatial scales: 

microscale, mesoscale, and megascale.  While it is generally accepted that catastrophic 

wind damage due to hurricanes is a major cause of forest damage (Coch 1994, Michener 

et al. 1997, Peterson 2000), secondary damage like insect infestation and/or forest 

wildfires can often exceed the forest damage due to high winds in a hurricane Cablk et al. 

(1994).  Studying the past spatial effects of hurricane damages like its extent, intensity, 

and identification of vulnerable secondary areas, planners and strategists try to figure out 
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new ways to predict the future spatial effects, which can be done quite effectively by 

satellite data analysis (Cablk et al. 1994).  Recognizing this need there have been many 

studies on the impact of hurricanes on coastal forests and wetlands using remote sensing 

(Hayes and Sader 2001, Ramsey et al. 1997, Ramsey et al. 1998, Ramsey et al. 2001a).  

Various approaches of automated classification have been used, including the use of 

neural networks by Dai and Khorram (1999), using Bi-directional Reflectance 

Distribution Function by Roy et al. (2002), decision trees in Chan et al. (2001), Friedl 

and Brodley (1997), fractals by De Cola (1989), Lam (1990), Lam et al. (1998) and 

others.  Automated identification of change detection patterns are the holy grail of remote 

sensing and there exists a need for development of basic algorithms, which provide 

reliable and rapid identification of time series imagery over large areas.  Read and Lam 

(2002) gave an excellent summary of the need for automated change detection: due to 

development of finer spatial and spectral resolution of satellite data, fast identification of 

‘hot spots’, and the need for reproducibility with minimized work for analysts.  

 If fractal methods, which are spatial methods founded on the spatial complexity 

principle, are in use for classification or identification of land cover, then they can also be 

used for automated change detection.  There has been interest in the application of 

fractals to identify land use-land cover change patterns in remotely sensed data since 

fractals were first conceived by Mandelbrot in 1975 (De Cola 1989, De Jong and 

Burrough 1995, Emerson et al. 1999, Lam and De Cola 1993, Lam et al. 1998, Rees 

1992).  All the studies cited above have considered fractals directly to describe land use-

land cover classification for remote sensing images.  Mesev et al. (1995) used Maximum 

Likelihood classifier derived output as input to a fractal classification algorithm as a 

 2



means of urban land-use density analysis.  Yet, there is a lack of a study for direct 

comparison of the performance of fractals with various spectral methods for change 

detection.  Hence, this study compares the effectiveness of selected fractal method and 

traditional spectral techniques to differentiate change in Landsat TM data for change 

detection in the coastal forest region of South Carolina. 

In trying to analyze a subset of the Landsat TM image for change detection using 

spectral methods, the effect of scale should be considered.  According to Tobler’s first 

law of Geography (Tobler 1970) “Everything is related to everything else, but near things 

are more related than distant things”, and Goodchild’s corollary (Goodchild 2003) that 

“objects at a coarse resolution are more identifiable than those at a fine resolution”.  

Since the basic concept of fractals is its self-similarity, so the analysis done at different 

scales should be theoretically equivalent (Goodchild and Mark 1987).  However, 

practically, most natural things captured in remote sensing images are not self-similar 

(Read and Lam 2002).  This issue of scale will affect the methods used in change 

detection (i.e., the local fractal TPSA method), and hence the change detection results. 

1.1 Objectives and Hypothesis 

The study investigates the performance of fractal dimension in change detection 

and compares its performance with traditional techniques like post-classification 

comparison using hybrid classification, PCA, and TCT.  This will be achieved through 

development of change impact analysis for a study site in coastal South Carolina, the 

Francis Marion national forest.  The objectives for this study are: 

1) Identify the impacts on land cover changes for the study area from 1987 to 1989. 

2) Identify the spatial patterns of the impacts. 

 3



3) Deduce which remote sensing method amongst the one chosen is better for 

change detection, and can the fractal method capture the changes effectively? 

The research hypothesis is that the fractal method will successfully identify the land 

cover changes due to the hurricane. 

 The selection of the classification and the two image differencing techniques, 

PCA and TCT, for change detection comparison with fractals is because they have been 

widely used in the remote sensing literature (Crist and Cicone 1984a, 1984b, Fung and 

Ledrew 1987, Li and Yeh 1998, Mas 1999, Singh 1989).  The post-classification 

comparison was selected to be the reference and its accuracy is verified by large-scale 

aerial photographs and GPS points from ground truthing.  The TCT, which is good at 

vegetative discrimination, was selected because of the vegetative nature of the study area, 

while the PCA was chosen to highlight the dominant changes (Read 1999). 
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CHAPTER 2: LITERATURE REVIEW 

 The most efficient, predictable, and economical way of monitoring changes on the 

earth surface as compared to field data collection or aerial photography, is by using 

satellite remote sensing (Hayes and Sader 2001, Maeder et al. 2002).  Land use-land 

cover (LULC hereafter) classification and change detection has been one of the first and 

most critical applications of remote sensing to produce thematic maps (Foody 2002).  

Some of the many methods of analysis encountered in remote sensing literature are as 

follows: 

1) Spectral based e.g. Image ratioing, Image differencing, Image classification 

2) Statistical e.g. PCA and Tasseled Cap 

3) Spatial/textural e.g. lacunarity, fractal, variogram, spatial autocorrelation 

During this process of environment change, typically a fixed scale of measurement is 

used at discrete intervals to build a series of time series images.  The predecessor of 

remote sensing for environmental characterization and monitoring are the aerial 

photographs, whose origins can be traced back to World War I and are documented in 

many historical articles/novels.  Satellite remote sensing began in earnest in the 1970’s 

with the advent of the Landsat program (Lillesand and Kiefer 2004).  A major reason for 

the widespread use of satellite images is that the scale of the analysis can be varied easily 

by manipulation and leads itself naturally to automation with computers.  Initially, due to 

the resolution of the satellite images, the scale was restricted to regional or higher scale, 

for e.g. in AVHRR, Landsat MSS etc.  Now due to the advent of 1-meter panchromatic 

and 4-meter multispectral IKONOS satellite imagery, it is easier to do analysis on a city 

block scale (Space Imaging 2004). 
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2.1 Problems in Change Detection 
 
 Remote sensing change detection suffers from several problems.  The accuracy of 

results obtained using multiple methods is highly dependent on the image processing 

technique being used, for example, unsupervised classification was found to be superior 

to PCA and image differencing by Mas (1999), whereas Dai and Khorram (1999) found 

supervised classification inferior to neural network.  Lam and Quattrochi (1992) mention 

that inappropriate application of a method can lead to a meaningless study.  As 

geographic data is present in several different scales, the scale of analysis also causes 

problems, i.e. spatial and spectral scales.  The same area when analyzed on different 

scales will result in different spatial pattern interpretation (Lam and Quattrochi 1992).  

Lam and Quattrochi (1992) summarize the problem well when they state that the “best 

choice of scale depends on the study objectives, the type of environment, and kind of 

information desired”. 

There also exists the problem of subjective interpretation of results, for example 

in a PCA analysis two different people with varying experience and knowledge of the 

area under analysis, may produce different conclusions given the same inputs.  Read 

(1999) and Xiao (2000) state that the environment of analysis for e.g. the cloud cover, 

influences the performance of different change detection methods.  A typical remote 

sensing image contains a tremendous amount of information and spatial complexity.  

Added to this fact is that the finished products for a designated area can be obtained every 

3 days for the 1-meter panchromatic and 4-meter multispectral IKONOS products (Space 

Imaging 2004).  This causes a skewed information overload, as there is a lot of 

information retrieval.  Moreover, the addition of the hyperspectral satellites, which has 
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many bands, makes it impossible for manual analysis (Lillesand and Kiefer 2004, Xiao 

2000).  Currently a given area is selected with manageable discrete time slices to build 

the time-series imagery for manual change detection.  Typically, the full range of the 

stored images is unutilized as it is unsuitable for consistent human analysis, which leads 

to the case for automation in remote sensing.  The automation process will lead to lower 

costs, and lead to a widespread usage of remote sensing products, much as GPS has taken 

the world by storm by moving into the mainstream usage. 

2.2 Land Use, Land Cover and Some Problems 
 

Land use and land cover are interrelated and often used in the remote sensing 

literature, though sometimes the terms cause confusion.  Land cover is defined as the 

feature type present on the surface of the earth, for example vegetation, water, different 

soils, rock, barren land etc; while land use is defined as a piece of land associated with 

some anthropogenic activity, which can be socioeconomic or cultural, and can be 

classified as land cover too (Dobson et al. 1995, Lillesand and Kiefer 2004).  Lillesand 

and Kiefer (2004) give an excellent example when they state that an urban tract of land 

can be described as residential use, while the land cover would consist of rooftop, 

pavement, vegetation etc.  The USGS derived Anderson classification system with Level 

1 classification scheme is used for this study (Anderson et al. 1976).  The problem with 

land use analysis with the higher LULC levels like Levels 3 and 4 is that it is restricted to 

aerial photographs and commercial high-resolution satellites with resolutions better than 

4 meters (Lillesand and Kiefer 2004).  Another problem with deriving accurate land use 

data for most purposes is that as yet it cannot be done independently through remote 
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sensing, it needs socioeconomic inputs like census, municipal, police survey etc, and in 

the absence of such data a in-situ interpretation is necessary (Lillesand and Kiefer 2004). 

2.3 Review of Change Detection Methods 
 

Change detection is a comparison of multi-temporal remotely sensed images, 

sometimes for pre-event and post-event, to map and analyze the spatial patterns of the 

changes in land cover or land use over time.  Lillesand and Kiefer (2004) and Read 

(1999) states that change detection techniques broadly involve four steps:  

1. data preparation by accurate registration, transformation, and multiple 

image mosaicking 

2. the actual change detection analysis 

3. production of change detection maps and statistics 

4. accuracy assessment of the change maps (only for classification) 

2.3.1 Data Preparation, Transformation, and Multiple Image Integration  
 

A typical change detection study involves the analysis of remote sensing images, 

which are sampled at different times, and acquired sometimes from different satellite 

sensors with differing spatial, spectral, and radiometric resolutions (Read 1999).  The 

basic premise of a change detection study is that the land cover changes will result in 

more variation in the Digital Number (DN hereafter) radiance than all other secondary 

changes combined, for e.g. atmospheric, noise, geometric and radiometric errors (Mas 

1999).  Therefore, for meaningful analysis, the image data must be converted into a 

common format i.e. normalization, to resolve all the differences during the image 

acquisition process to guarantee accuracy of results for the study.  The images acquired 
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from the satellite providers all undergo a common set of procedures termed image pre-

processing, to create a precise representation of the original scene (Lillesand and Kiefer 

2004).  The pre-processing includes corrections such as radiometric, geometric, and noise 

removal.  Lillesand and Kiefer (2004) define a basic minimum set of corrections for a 

multiple images change detection study as 

1. geometric correction to account for the satellite sensor idiosyncrasies of 

systematic and random distortions 

2. radiometric calibration of the radiance values from different sensors to 

account for seasonal changes in position and distance of sun relative to 

earth, and atmospheric effects. 

3. resampling for registration/overlay of multiple dates, resolutions and a 

eventual merge into a GIS. 

Ideally, the problem would be reduced if the data were obtained from a single sensor, say 

Landsat 5 or Landsat 7, which would have the same spectral, spatial, and radiometric 

resolution (Read 1999).  However, in most cases, appropriate time-series images from a 

single sensor are not available.  In addition, the properties of the satellite or the sensor 

itself change over time, as in the recent case with Landsat 7 where its Scan Line 

Corrector (SLC) system failed due to a mechanical failure (USGS 2004).  Precise 

resampling of multiple images with ground control points using either independent 

ground truth registration or co-registration is very important before proceeding further for 

analysis (Singh 1989).  The general rule for accurate change-detection is to ensure pixel 

co-registration is within 1/2 pixel of the satellite spatial resolution as an acceptable error 

(Lillesand and Kiefer 2004).  Read (1999) highlights the importance of choosing of a 
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suitable temporal scale by observing that any change detection technique identifies 

changes between discrete checkpoints in time, and any intermediate though still valid 

changes occurring in between those checkpoints will be undocumented.  Many 

researchers state the importance of maintaining the soil moisture conditions in tropical 

forests and lagoons by stating that changes in dry and wet conditions can cause 

interpretation problems (Grover et al. 1999, Mas 1999, Townsend and Walsh 1998). 

 To summarize, for change detection using remote sensing, several factors must be 

taken into consideration, including the temporal resolution, spatial resolution, spectral 

resolution, radiometric resolution, the atmospheric conditions, and the seasonal effects.  

Since it is practically impossible to ensure the above, the person conducting change 

detection contrives to make it as similar as possible, hence the need for various 

corrections in the pre-processing stage. 

2.3.2 Change Detection Analysis 
 

A typical set of spectral change-detection techniques used in a change detection 

study are chosen including image ratioing, image classification, and image differencing 

(Read 1999).  A threshold value for change using gray level thresholding or thresholds 

derived from histogram of the image is generated in order to separate the areas of land 

cover change from the secondary changes (Singh 1989).  The most commonly used 

method for change detection usually is the independent post-classification comparison (Li 

and Yeh 1998).  Read (1999) states that the choice of a method depends on the study 

objectives and data availability.  The results of a change detection study will produce the 

possible outcomes as outlined in Table 1. 
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Table 1: Possible outcomes of a change detection study 

 
Study objective Knowledge required Remote sensing technique 

from-to change classes a priori or a posteriori Classification 

Change/no change classes No Fractals, Image differencing, 
Image ratioing  

Change/no change classes 
with direction of change 
information 

No change vector analysis 

 
(Modified from: Read 1999) 
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 Li and Yeh (1998) state that the pixel based change detection methods have two 

variations: image differencing and image ratioing.  These spectral techniques need no  

prior or subsequent knowledge for general comparison and hot spot detection, but suffer 

from the disadvantage that they can provide only a change/no change result, with no 

information of the nature of change (Li and Yeh 1998, Read 1999).  Some of the 

advantages with the image ratioing techniques are that different bands can sense different 

land cover features to get a complete picture of the changes occurring in the area; 

variations in sun angle, shadows, and reflectance between images are minimized because 

of the absolute magnitude reduction due to the ratio operation (Lillesand and Kiefer 2004, 

Read 1999).  This leads to the development of various indexes based on combinations of 

satellite bands for different applications: NDVI, Time NDVI, several indexes for mineral 

detection etc. (ERDAS Imagine 8.7 Field Guide).  Read (1999) mentions that with both 

the pixel based approaches, the change summary depends on the chosen thresholds, 

which are sometimes chosen arbitrarily but generally based on band statistics. 

Another technique, PCA, is more complicated than the classification or the 

differencing methods.  Fung and Ledrew (1987) and Read (1999) state that the results 

from PCA is a transformed dataset and is image dependent, the proportion of change in 

study area should be small relative to the no-change area.  The classification method is 

suitable for cases where radiometric calibration is not possible (Read 1999).  However, 

classification suffers from the disadvantage that individual image errors may be 

multiplied (Mas 1999).  Of special interest in this study is the observation of the study by 

Houhoulis and Michener (2000), where they state that the spectral similarities among 

many land cover classes for such as wetlands, agricultural fields, and forests make 
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satellite image classification based solely on spectral properties very difficult.  The 

following sections review the remote sensing literature for the different methods used for 

change detection in this study. 

2.3.2.1 Principal Component Analysis  
 
 PCA is a multivariate statistical technique often used as a data reduction 

technique in remote sensing (Lillesand and Kiefer 2004, Singh 1989).  In a dataset with n 

number of variables, two or more variables are often linked together and if that dataset is 

reduced to the new transformed variables (principal components), the changes are easier 

to spot and explain.  The set of new images representing the number of desired principal 

components are derived from linear combinations of an original set of multi-spectral 

and/or multi-temporal images.  PCA can be applied by either using the covariance matrix 

or the correlation matrix extracted from the images, depending on whether the dataset 

consists of raw/unstandardized or standardized variables (Krzanowski 1984).  The 

eigenvalues and eigenvectors are then computed from either the covariance or the 

correlation matrix.  The eigenvalues refer to either the covariance or the correlation of the 

nth principal component (Krzanowski 1984).  The eigenvectors contain the transformation 

coefficients, which represent the direction and contribution of each band on the 

components.  The new components are the addition of the product of the DN’s of 

individual bands and the coefficient of the band on the components (Lillesand and Kiefer 

2004). 

 The new matrix formed by the principal components has the following properties 

(Mather and Openshaw 1974, Shaw and Wheeler 1994): 

• The principal components are uncorrelated (orthogonal) to each other. 
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• The successive principal components account for the remaining maximum 

variance after extraction of previous principal components. 

 The PCA transformation is constrained such that the total variance of the input 

dataset should equal the total variance of the PCA output.  The content of the principal 

component images are themselves not fixed, as it is highly dependent on the input 

information content, and the output is derived statistically.  Typically, the first component 

will depict the dominant variance of the image with low noise and high signal content, 

while the second is a bipolar component with high values from some bands and low 

values from other bands.  The third and possibly the fourth and higher components 

generally depict the subtle details obscured by the first two components with 

correspondingly lower signal to noise ratio i.e. low signal strength with high noise values 

(Fung and Ledrew 1987, Singh 1989).  PCA has a major limitation that interpretation of 

the derived dataset is difficult between different dates or different scenes due to this 

image specific nature of the technique itself (Crist and Cicone 1984a).  To overcome the 

limitation, Li and Yeh (1998) proposed using PCA with stacked multiple temporal 

images so that all the classification signatures produced are the same leading to reduced 

errors since all the images are classified simultaneously. 

2.3.2.2 Tasseled Cap Transformation 
 

 TCT is a variation of PCA, but with fixed coefficients for a given sensor of a 

satellite (Crist and Cicone 1984a).  The TC Transform is sensor dependent, since the 

reflectance curves for different types of classes are different for every sensor and so has 

fixed coefficients for different satellite sensors (Crist and Kauth 1986).  The 

transformation leads to the establishment of new spectral axes due to rotation so that the 
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original image is projected into three new components: brightness, greenness, and 

wetness (Crist and Cicone 1984a).  It is important to note that TCT does not require that 

the data transformation of new axes to be orthogonal, instead the data plane is oriented so 

that there is direct relation to physical scene characteristics (Crist and Cicone 1984a).  

Read (1999) terms the TCT as a “vegetative transform differencing”.  Crist and Cicone 

(1984a) also demonstrate that the variability of the six reflective bands of TM data can be 

effectively reduced to three dimensions by defining a plane of soils, a plane of vegetation, 

and a transition zone between the two planes.  Crist and Cicone (1984a) define the three 

TCT bands: 

• Brightness: Weighted sum of all reflectance bands for the sensor so it is more 

responsive to changes in total reflectance.  It is sensitive to the measurement of 

soils or bare surfaces, i.e. TM bands 3, 4, and 5, but increase in vegetation density 

particularly in TM band 1 and 2 have no effect on this component.  

• Greenness: Contrast between the sum of the visible bands and the near-infrared 

(NIR hereafter) bands.  It is useful as a measure for green vegetation density as 

this band responds to both high visible absorption, and high NIR reflectance.  

• Wetness: Contrast between the sum of the visible and the near-infrared bands with 

the sum of longer-infrared bands.  It is sensitive to both soil moisture and plant 

moisture as it has high visible reflectance and high NIR absorption and shows the 

interrelationship between soil and canopy moisture.  It is mostly depicting soil 

moisture, and to a lesser extent the plant moisture.   

While PCA tries to reduce total image variance into several principal components, TCT 

tries to delineate into three distinct bands preserving the information in each data 
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structure (clusters of data points in the 6 dimensional TM plane) and the geometric 

relationships between the data structures.  TCT is an invariant transformation and is 

sensor dependent, whereas PCA is sensor independent (Crist and Kauth 1986).  TCT is a 

useful tool in land-cover change detection of forest over large study areas and long time 

periods (Collins and Woodcock 1996, Franklin et al. 2002). 

2.3.2.3 Fractal Methods 
 

The concepts of fractals and fractal dimension were first introduced by 

Mandelbrot in 1977 (Lam 1990).  Lam (1990) gives a succinct review of the fractal 

concepts.  Read and Lam (2002) observe that the fractal dimension D has been used to 

characterize land use/land cover changes in remote sensing, but not much research for 

change detection has taken place using fractals.  Nath and Dewangan (2002), Read and 

Lam (2002), and Weishampel et al. (2001) are some of the very few examples who have 

used fractals for change detection for seismic reflection and LULC change. 

Fractals are based on the concept of self-similarity, which means that 

theoretically, the structure remains consistent at a reduced scale recursively, and scale 

independent comparisons are possible (Goodchild and Mark 1987, Lam and Quattrochi 

1992).  Fractals as used in remote sensing tend to emphasize the spatial relationships 

between adjacent cells (Lam and De Cola 1993).  They are different from the traditional 

spectral methods, which either perform a direct pixel-by-pixel comparison between two 

images or matrix of from-to classes during classification.  Ridd et al. (forthcoming)  state 

that instead of finding micro-level changes in pixel comparison and then trying to 

interpret change, a comparison of the analysis of spatial relationships between images in 
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a time-series will reflect significant differences much faster simply by an indication of a 

large change in the fractal dimension D. 

Read and Lam (2002) state that the more spatially complex the area under 

question the higher is the fractal dimension.  Since most natural phenomena are not pure 

fractals they will have varying fractal dimensions D at different scales, for remote sensing 

images D varies between 2 and 3 for different land-cover types and different spectral 

bands.  Some studies have found D value close to 1.0 for water surfaces and for 

convective and supercell storms (Angeles et al. 2004, Feral and Sauvageot 2002).  Other 

studies working with Landsat TM and AVIRIS images found significantly high D values 

for urban areas (Lam 1990, Qiu et al. 1999).   

Fractal dimensions calculated for remote sensing images can be used theoretically 

to link/extrapolate local changes to regional and global scale changes because of its scale 

independent property.  However, in practice it is not possible to always extrapolate 

changes when the scale of analysis is changed (Emerson et al. 1999, Lam 1990, Lam and 

Quattrochi 1992, Read and Lam 2002).  A major caveat pointed out by Lam (1990) is that 

for the same surface, the D values for different fractal algorithms are different.  Finally, 

Read and Lam (2002) and Ridd et al. (forthcoming) highlight the main problems 

prohibiting the widespread use of fractals in remote sensing as the lack of standardized 

tools and lack of algorithm details in research papers while comparing the same fractal 

algorithms. 

Many methods have been developed to measure the fractal dimension of natural 

phenomena.  In geography, various fractal algorithms like isarithm, triangular prism, and 

variogram have been described (Goodchild 1980, Jaggi et al. 1993, Kolibal and Monde 

 17



1998, Lam and De Cola 1993, Qiu et al. 1999).  All the above fractal methods, along with 

other spatial methods, are included in ICAMS (Image Characterization and Modeling 

Systems) described in and developed by Lam et al. (1997), Lam et al. (1998), and 

Quattrochi et al. (1997).  Lam et al. (2002) found that in comparison with the isarithm 

and variogram methods, the triangular prism method is more accurate for estimation of 

fractal dimension of surfaces with high spatial complexity, which is a characteristic of 

remote sensing imagery.  The modified triangular prism method was therefore chosen for 

this study.   

The triangular prism method implemented in ICAMS is described below (Read 

and Lam 2002, Ridd et al. forthcoming).  It considers a 3D pixel square formed by four 

pixels which are neighbors to the centered original pixel and which are projected 

vertically to form four triangles with the original pixel at center of this virtual “triangular 

prism”.  The pixels per side represent step size, and length of the vertically extended lines 

is their z values.  The area for the four individual triangles at the top of prism thus formed 

is calculated individually and then summed up until all of the total surface area for the 

image is also calculated for increasing step sizes.  Then the log-log plot between the total 

surface areas and the step sizes is used to calculate the regression slope B using the least 

squares regression on the selected points.  The fractal dimension D is then D = 2 –B.  See 

Figure 1 for explanation. 

The difference between the original triangular prism method implementation and 

the modified ICAMS implementation is in the nature of calculation of the fractal 

dimension values (Lam et al. 2002).  The original method uses a square of step size to 

regress the triangular prism areas whereas the modified method uses only the step size to  
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Figure 1: Coordinate structure for triangular prism method 
 
(Source: Jaggi et al. 1993) 
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derive the correct fractal dimension values. 

2.3.2.4 Post-Classification Comparison 
 

This is perhaps widely used because of its ease in manipulation in spite of its 

many inherent disadvantages.  The analyst can lump many change classes into a single 

thematic class because of their irrelevance to the study, conversely the analyst can also 

study a particular land cover class with more detail, for example, by conducting analysis 

of Level 2, 3 or 4 in the USGS-Anderson classification system (Read 1999).  Generally, 

unsupervised classification is preferred in a typical scene when the amount of spectrally 

separable land cover classes is unknown and the total spectral variation is assumed wide, 

that is, the land cover class reflectances represent a diverse study area (Thomson et al. 

1998).  Supervised classification, on the other hand, is preferred where the land cover 

classes are more homogeneous.  The choice is determined by the nature of the land cover 

classes in the study area.   

One problem of this procedure is the occurrence of the edge effects, which may 

occur at various stages in the classification process.  Read (1999) states that the edge 

effects occur from image misregistration during geometric correction process, fuzzy 

boundaries in the reference data, and misclassification of doubtful pixels.  The 

seriousness of edge effects depends on the spatial resolution and the number of different 

bands of the satellite sensor, i.e. the spectral resolution.  The edge effects will decrease if 

we increase the spatial resolution and the number of bands of satellite, on the other hand 

it will lead to more data, and more usage of computational resources, which is difficult to 

handle with current generation of desktop machines.  It is ultimately a tradeoff between 

too much and too less information for spectral techniques.  Serra et al. (2003) state that 
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combination of data from different sensors can contain a significant proportion of 

boundary errors.  

In unsupervised classification, it is difficult to choose the correct number of 

spectrally separable classes such that there are no bands with mixed information.  During 

classification it is sometimes apparent that what has been classed as one land cover class 

(e.g. water) in one part of the image appears to be another land cover class (e.g. wetland) 

in another part of the same image.  Read (1999) summarizes the problems succinctly:  

1) Edge transitions across different vegetation types. 

2) Edge transitions between different classes within the same image. 

3) Boundary uncertainties due to fragmentation. 

Mertens et al. (2003), who use a genetic algorithm for sub-pixel mapping in their paper, 

state that in a remote sensing image, mixed pixels are a reality.  That is the reason for the 

advent of the soft classification and sub-pixel techniques in recent years.  Mertens et al. 

(2003) define soft classification as using the degree of membership of pixels belonging to 

different land cover classes and sub-pixel mapping as a procedure used to sharpen 

classified image using mixed pixels.  

2.3.3 Accuracy Assessment of Classification 
 

 In remote sensing studies, which use any sort of classification technique for 

change detection, either supervised, unsupervised, or hybrid, finally have to undertake an 

accuracy assessment procedure to ensure the accuracy of interpretation of the matrix of 

from-to classes.  Arzandeh and Wang (2003) state that change-detection accuracy is 

highly dependent on the accuracy of the individual classifications of the images involved 

in the process.  Lillesand and Kiefer (2004) state, “A classification is not complete until 
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its accuracy is assessed”.  Congalton (2001) further elaborates the reasons for accuracy 

assessment as 

1. The need to know the truthfulness of our analysis and to learn from mistakes 

2. Quantitative comparison of classification methods 

3. Use the accuracy assessment in execution of policy decisions 

Congalton (2001) explains why accuracy assessment is needed by giving an example of 

disagreeing wetland maps of the same area created by different agencies; and without a 

reliable and valid accuracy assessment, nobody will know which wetland map to use.  

 Lillesand and Kiefer (2004) describe the accuracy measures in the generation of 

an error matrix (also called confusion matrix or contingency table): producer, user, 

overall accuracy, and the Kappa statistics.  They state that the classification errors are of 

either commission (inclusion) or omission (exclusion).  They define the following terms: 

• The overall accuracy is defined as the sum of all correctly classified pixels 

divided by total number of pixels. 

• Producer’s accuracy indicates the performance of the analyst in 

performing the classification of any given cover type.  It is the ratio of 

correctly classified pixels for each land cover class to the total number of 

pixels used in reference dataset. 

• User’s accuracy informs the user of the reliability of the classification 

procedure.  It is defined as the ratio of correctly classified pixels for a 

given land cover class to the total number of pixels in that class.  

Lillesand and Kiefer (2004) define the Kappa (khat) statistic as a ratio of the measure of 

the difference of agreement between reference data and classifier to the chance agreement 
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between reference and random classifier.  It serves as an indicator that if Kappa 

approaches 1.0, it is more true agreement as opposed to it approaching 0, which is more 

of a chance agreement with accuracy of classification (Cablk et al. 1994).   

 Congalton (2001) in Figure 2 illustrates the gradual building up of the errors in a 

change detection study.  In general, to increase the accuracy of the classification process 

the following considerations have to be followed: 

1. Sampling scheme: Compares the classified data to the ground truth or 

reference data in either of two ways: either by construction of random 

points or integration of user defined field plot data usually through use of 

GPS (ERDAS Imagine 8.7 Field Guide).  Congalton (2001) states that in 

most change detection studies stratified random sampling is sufficient. 

2. Sample size: A minimum of 50 samples per map class are required to 

ensure a good classification estimate Congalton (2001).  Therefore, for 

five different classes, a minimum of 250 samples need to be taken. 

3. Sampling unit: Congalton (2001) defines three sampling units.  (a) pixel 

(b) a 3x3 pixel group and (c) a polygon, but stating the need for avoiding a 

single pixel for sampling due to the difficulty of correlation on the surface 

even with GPS. 

4. Use of post-classification contextual filter: Zukowskyj et al. (2001) state 

that choosing a simple filter may increase classification accuracy. 

5. Combination of map classes: Ramsey et al. (2001b), Zhu et al. (2000) 

state that the proper combination of homogeneous classes during 

classification will reduce misclassification errors. 
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Read (1999) states that the accuracy assessment procedure depends heavily on the quality 

of the reference data; ideally, the accuracy should be very high, but practically it may be 

outdated or very low quality.  Foody (2002) states that there are lots of problems 

associated with accuracy assessment which are impossible to achieve in practice, such as  

the assumption of perfect coregistration of data sets.  He further states that one of the 

major problems of the confusion matrix and the kappa coefficient is the absence of 

information of the spatial distribution of the classification errors.  Reference data used 

can range from diaries, historic maps, USGS Quads, aerial photography, DOQQ’s, to 

GPS. 

2.4 Importance of Coastal Wetland Forests 
 
 Cox and Peron (2002) define wetlands as  

“an area where the soil is saturated with or covered with water, supporting 
hydrophytic plants – plants that can grow in water or very wet soil – for a  
good portion of the year”. 

 
Most studies in hurricane damaged coastal wetland forests (referred to as wetlands 

interchangeably in this study), and in general for southeastern coastal forests, note 

dramatic losses in the acreage of the wetlands (Cablk et al. 1994, Michener et al. 1997, 

Ramsey et al. 1997, Ramsey and Laine 1997, Ramsey et al. 1998, Ramsey et al. 2001b).   

To understand these losses and to help in assessment of long-term changes in coastal 

wetland forest landscapes, more remote sensing based studies are being conducted.  The 

choice of remote sensing is generally made due to the inaccessibility of the wetlands, 

which are composed of marshes and swamps.   

For much of modern history wetlands have been misunderstood and misused, we 

hear of evidence of drainage of wetlands for commercial reclamation in coastal cities, for  
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Figure 2: Error source accumulation process in a remote sensing project 

 
(Source: Congalton 2001) 
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agriculture in Israel, building of dikes/levees etc.  Cox and Peron (2002) state that before 

the 1960’s wetlands were viewed as wastelands, unfit for any useful purpose.  Turner et 

al. (2003) in Table 2 summarizes the wetland functions and its innumerable 

socioeconomic benefits in the coastal wetlands of Norfolk and Suffolk Broads in eastern 

UK, which can be applied to similar places around the world.  In the city of Kolkatta 

(formerly Calcutta) in West Bengal state in India, massive coastal wetlands act as natural 

sewage treatment facilities, protect it from the inevitable Himalayan floods, and provide a 

rich habitat for migratory birds.  Drained or devastated coastal wetlands are a source of 

greenhouse gases including Carbon dioxide and Methane, caused by aerobic degradation 

(Van Den Bos 2003).  Brinson and Malvarez (2002) note that countries with lost 

wetlands have a hard time in trying to maintain and subsequently increase the area and 

bio-diversity of its wetlands.  Due to the anecdotal and well-known evidence of global 

warming, it is predicted that the oceans will rise over the next few decades flooding many 

parts of the world.  In such a scenario, humans can learn a lot from wetlands, which 

harbor extensive flora and fauna, highly adapted to living in seawater.  Halophytes, which 

are salt tolerant plants, thrive in coastal wetlands; Schmalzer (1995) outlines the 

tremendous bio-diversity of saline and brackish marshes.   

Conner (1998) states that the mangrove forests of the southeastern United States 

are the most studied for the impact of hurricanes.  Conner (1998) further states that 

hurricanes cause upto 90% mortality of mangroves in south Florida, the mangrove forests 

reach maturity in 20-25 years which coincides with the mean frequency of major Gulf 

hurricanes; and so the hurricanes to some extent control the species composition within 

mangrove dominated areas by keeping them in a perpetually formative state to keep the 
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net biomass production higher.  Day et al. (1995) speculate that the delta regions of the 

world can be the first line of defense against a sea level rise due to global warming, 

simply by ensuring that the wetlands get enough sediment input needed for sustenance 

and to prevent flooding by seawater level increase.  Conner (1998) states that high winds 

and storm surge waves roll up portions of mangrove swamps into ridges of trees, grasses, 

aquatic plants, and algae; these with the help of the trapped silt/sediments imprison large 

areas of freshwater which acts as a buffer against saltwater intrusion.  Conner (1998) also 

states that the hurricanes also create conditions for regeneration of wetlands by the 

creation of newly exposed ‘flats’. 

An emerging field called phytoremediation uses various wetland trees, grasses, 

and plants to clean polluted urban and industrial environments by utilizing artificially 

constructed wetlands, which mimic their natural counterparts.  Research is still going on 

for the search of species, which can clean different pollution infected sites, without the 

biodiversity within the wetland forests, it will be impossible to harness these ecological 

cleaning machines in the service of humanity.
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Table 2: Wetland functions and associated socioeconomic benefits in the coastal wetlands of Norfolk and Suffolk Broads in 
eastern UK 

 

 (Source: Turner et al. 2003)
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CHAPTER 3:  DATA SOURCES AND METHODOLOGY 

3.1 Data Sources and Software 

This study evaluates the impact of Hurricane Hugo on the land cover in a part of 

the Francis Marion National Forest.  This study will supplement the change detection 

study published in Cablk et al. (1994) for the Hobcaw forest, with the same WRS 

Path/Row coordinates but a different study area.  It also attempts to explore a new 

method, namely local fractals, for change detection. 

3.1.1 Landsat TM Images 

Three Landsat TM images were purchased for the purpose of the study: pre-event 

image in 1987, post-event image in 1989, and a recovery event image in 2001.  They 

were obtained for WRS path 16 row 37 on 14 October 1987, 11 October 1989, and 18 

September 2001 respectively.  They represented the best possible scenes in the USGS 

Landsat TM archive in the months of September and October for which the selected area 

was relatively cloud free.  The reason for the selection of the pre-event image of 1987 is 

that the available 1988 images consist of clouds over the study area.  The few areas of 

cloud and cloud shadow in the obtained images are mostly present outside the study area, 

but are classified as ‘cloud’ in post-classification comparison, if present, and ignored in 

all other analyses.  The recovery image is excluded from the present analysis due to time 

constraints and unavailability of a suitable reference image. 

3.1.2 Aerial Photography 

Two reference aerial photographs were obtained from the USGS.  They are dated 

02/09/1989 for the pre-event image and 01/27/1990 for the post event image.  They are of 
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a scale of 1:20,000 with actual paper size of 18’ by 18’ with 1 inch equaling 1666 feet, 

Color IR images obtained from the NAPP archive with a Flight line – Station number of 

0795W-293 near the Wambaw swamp and Coffee creek area in FMNF lying between co-

ordinates of latitude N 33°10’ - N 33°5’ and longitude W 79°39’ - W 79°33’.  The 

available aerial photographs for the study area for ground truth were not available in the 

same year and month for both the pre-hurricane and post-hurricane images, so it is hoped 

that the images will suffice for classification accuracy. 

3.1.3 National Land Cover Data: South Carolina 

 The South Carolina NLCD dataset obtained from the USGS was used during 

classification.  The dataset was produced over a course of several years from 1992 – 

2000, and consists of a standardized land cover data for the conterminous US using 

mosaicked Landsat TM data.  From the USGS Readme file, the projection is Albers 

Conical Equal Area, with NAD83 Datum and a Spheroid of GRS1980.  The latitudes of 

the two standard parallels are 29.5 degrees North Latitude and 45.5 degrees North 

Latitude.  The longitude of the Central Meridian is 96 degrees West Longitude.  The 

latitude of the Origin of the Projection is 23 degrees North Latitude.  The False Easting at 

central meridian is 0 meters, and the False Northing at origin is 0 meters.  Number of 

rows are 11915 and number of columns are 15620 with a pixel size of 30 X 30 meters.  

The upper left projection coordinates are 1138290 and 1458540 meters, while the lower 

right projection coordinates are 1606860 and 1101120 meters respectively. 
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3.1.4 GPS Points Survey 

A Trimble GeoExplorer 3 GPS data logger was used for the collection of GPS 

points used in the study.  GPS points were acquired on the field trip undertaken during 

the period of June 15 – June 19 2004 to validate the classification procedure and acquire 

any relevant information from the USDA Forest Service, Wambaw Ranger District, 

FMNF office.  Even though the field trip was undertaken after such a long time after the 

hurricane occurrence, it proved to be immensely helpful in the classification procedure. 

3.1.5 Software Used in Study 

 The image pre-processing which included file manipulation, rectification, 

classification, change detection using PCA, TCT and various GIS functions, and the 

accuracy assessment procedures used in the study were performed in ERDAS Imagine 

8.6 / 8.7 image processing software. 

 ICAMS is a package, which contains selected spatial analysis functions for the 

analysis and characterization of remote sensing data (Lam et al. 1998).  The ICAMS 

package is used in this study to calculate the fractal dimensions using the triangular prism 

method in a local fashion using a moving window, and to produce the change difference 

image. 

 GPS Pathfinder Office 2.9 was used for the post-processing of the GPS point data 

features like GPS point upload to the software, and for differential correction of the 

acquired data. 

 ArcView 3.3 was used to merge the GPS Point Id vs. Feature class table, and the 

GPS Point Id vs. UTM coordinates table into a shapefile, which would be used in 

ERDAS Imagine for an overlay over the classified images. 
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3.2 Study Area 

Hurricane Hugo made landfall just north of Charleston, SC on September 22, 

1989 while it hit the South Carolina coast in the early morning hours of September 22, 

1989, it was classified as a Category 4 hurricane on the Saffir-Simpson scale (Conner 

1998, Hook et al. 1991).  Hook et al. (1991) states that the center of the eye of Hurricane 

Hugo passed within 8 km of the FMNF.  Cablk et al. (1994) state that approximately $6 

billion in hurricane induced damage was attributable to Hugo, which makes it #2 on the 

top ten costliest hurricanes in the 20th century (NOAA 2004).  Cablk et al. (1994) state 

that 23 of 46 counties in South Carolina were affected with 1.8 million hectares of 

varying forest damage.  Figure 3 shows the path of Hurricane Hugo (Conner 1998), and 

Figure 4 shows the storm track (USDC-NWS, North Atlantic Hurricane Tracking Chart. 

2003).  Figure 5 shows the study area in relation to the subset of the FMNF while, 

Figures 6 and 7 are the subsetted study area in the FMNF for 1987 and 1989.  

The FMNF contains roughly 252,840 acres and is located in the coastal plains of 

South Carolina (Monitoring and Evaluation Annual Reports 2002).  It is a multiple-use 

resource with plenty of forest based recreation activities including hunting, hiking, 

camping and picnicking (Hammitt et al. 1990).  Coch (1994) states that coast-normal 

hurricane tracks (perpendicular to the coast) tend to produce a wide swath of destruction, 

and Hook et al. (1991) state that most of the Hurricane Hugo’s damage occurred due to 

short duration gusts formed in and near the eyewall covering nearly the entire area of 

FMNF.  FMNF was formed in 1936 due to creation of barren land by extensive railroad 

logging of large, old–growth longleaf pine, loblolly pine, and cypress timber, and is very 
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diverse in land cover.  (Monitoring and Evaluation Annual Reports: Francis Marion 

National Forest 2002, Cablk et al. 1994). 

3.3 Methodology 

3.3.1 Preparation of Images 
 

The pre-event image dated October 14, 1987 and the post-event image dated 

October 11, 1989 were received from USGS in the form of raw Landsat TM bands in 

BSQ Format.  These were each transformed into a single Generic binary unsigned 8-bit 

image with the seven layers using the Import Function in ERDAS Imagine 8.7; the 

images were then projected to UTM Zone 17 North with spheroid of GRS 1980 and 

datum of NAD 83, using the ‘Layer Info’ option in the currently selected Image Viewer.  

A subset consisting of the FMNF, which is just north of Columbia, SC where Hurricane 

Hugo first hit the South Carolina coast, was selected.  This was then subsetted again to 

include the study area closely corresponding to the aerial photos for both the 1987 and 

1989 Landsat images.  The images were subsetted such that the rows and columns were 

the same and covered a little more area than the reference aerial photographs.  A major 

reason was that the larger spatial extent of the Landsat TM images allowed moving 

window computations for the local TPSA method to run throughout the area covered by 

the reference aerial photographs.  Moving window computations produce an edge where 

there is no information output. 

 It should be noted that wherever possible, the option “Ignore zero in Output stats” 

is always chosen in ERDAS Imagine when calculating statistics for output file for all 

parts in the analysis.  Using the ‘Swipe’ tool, which can be considered as a crude change  

detection tool, swiping one image on top of another both horizontally and vertically I 
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Figure 3: Map of SC showing the location of FMNF and the path of Hurricane Hugo 
 
(Modified from: Conner 1998) 
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Figure 4: Storm track of Hurricane Hugo 

ource: NOAA 2004) 
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Bulls bay 
 
 
 

Figure 5: Study area in subsetted FMNF scene displayed using bands 4, 3, 2 (RGB) 
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Figure 6: Landsat study area subset for 1987 in Bands 4, 5, 3 (RGB) 

 

Figure 7: Landsat study area subset for 1989 in Bands 4, 5, 3 (RGB) 
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Table 3: Band statistics for Landsat study area subset for 1987 

 
 

  Band statistics for subsetted 1987 image 
       

Band # Min Max Mean Median Mode 
Std. 
Dev. 

1 44 128 56.04 56 56 2.24 
2 16 68 21.5 21 21 1.56 
3 11 80 16.82 16 16 2.39 
4 7 92 54.61 54 53 5.43 
5 6 173 42.98 42 39 8.76 
7 4 109 13.53 13 12 4.19 

 

 

 

 

 

 

Table 4: Band statistics for Landsat study area subset for 1989 
 
 

  Band statistics for subsetted 1989 image 
       

Band # Min Max Mean Median Mode 
Std. 
Dev. 

1 43 161 62.5 62 62 2.43 
2 10 84 23.93 24 23 1.59 
3 5 142 25.34 25 24 2.97 
4 7 175 50.63 51 56 10.43 
5 2 153 57.73 56 53 10.43 
7 2 168 23.92 23 23 4.85 
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visually compared the images to see if the land cover features matched.  This made it 

clear that the images were not geo-referenced to each other.  Accurate geo-referencing is 

very important for change detection so that the pre-event and post-event images match 

each other as closely as possible spatially, otherwise relative locations of all objects will 

be shifted in the images giving erroneous change detection results.  The only differences 

detected by our methods should be the actual land cover changes.  

Geometric correction using Polynomial transform was selected with the goal of 

attaining a resultant RMS error of less than 1 pixel by 1 pixel.  The post-event image of 

1989 was treated as reference and the 1987 image was the input image.  A pixel for 

Landsat TM represents a 28.5-meter by 28.5-meter square (USGS Image header file).  

Twelve ground control points (GCP’s) were selected such that there would be roughly 

three rows of four GCP’s each, so that the images could be geo-referenced to each other.  

The nearest neighbor resampling method is preferred for rectification because it preserves 

the original values of the input pixels (ERDAS Imagine 8.7 field guide).  The actual RMS 

error obtained was 13.0057 meters, which is slightly less than one-half of a pixel, which 

is acceptable.  The rows and columns were again subsetted to make sure of exact match.  

The final images had 400 rows and 462 columns denoting height and width respectively.  

The upper left UTM coordinates are 625071.50 and 3672934.00 while the lower right 

UTM coordinates are 638210.00 and 3661562.50 respectively. 

 The resulting geometrically corrected images were then processed for radiometric 

correction.  For the USGS radiometric correction procedure the thermal band six should 

be stripped out from the images, which was accomplished for both the unsigned 8-bit 

images.  Mr. DeWitt Braud supplied the necessary radiometric model files for conversion 
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of Landsat 4 and 5 image files into a Landsat 7 image file, and an Excel spreadsheet, 

which included a Julian date model, for the calculation of Earth-Sun distance.  The tables 

used in conversion are listed in Appendix B (Chander and Markham 2003).  The 

radiometric models needed an eccentricity model and solar elevation as input, which was 

obtained from the USGS supplied header files for both the images.   

The output of the reflectance procedure is a floating-point image, which was used 

for analysis for Tasseled Cap transform only.  The DN input images were used for all 

other analysis.  The DN input images were then subsetted to have only Bands 4, 5, and 3, 

the band statistics are shown in Tables 3 and 4. 

3.3.2 Hybrid Image Classification and Change Detection 
  

The unsupervised method was used initially because the study area is small and it 

was better to discover spectral classes for the more complicated 1987 image.  However, 

due to low accuracy of the initial classification and problems in proper discrimination 

between some land cover classes, hybrid classification approach was used.  Only bands 3, 

4, and 5 were used for classification.   The unsupervised method was used to generate a 

signature file with 100 classes.  Each spectral class was then checked individually to 

ensure that univariate standard deviation was less than 10 % of the mean value for all the 

three bands under consideration.  Histograms for the three bands were also checked to 

ensure that they had a normal appearance.  Spectral classes, which failed both these 

checks, were eliminated from further analysis.  Afterwards the pixel count column was 

copied to the probability column, and this final signature file was used for generation of a 

supervised classification. 
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With the help of the USGS National Land Cover Data (NLCD) image for South 

Carolina, reference aerial photos, and GPS field data I then lumped these classes into four 

classes following USGS NLCD scheme.  Table 5 shows the classification scheme used in 

the study.  The roads present in the study area belong to the transport category in the 

urban land cover class, but since the roads are sometimes spectrally obscured by the 

cultivated row crops, and the percentage of roads in the study area is minuscule, so they 

are combined into a single land cover class called cultivated row crops / transitional 

barren (C.R.C / T.B).  A major reason for lumping classes together is avoid the difficulty 

of finding truly random reference points for such a small land cover class. 

Both the images were then recoded (Interpreter ==> GIS Analysis ==> Recode) 

with the same class values to ensure that it contained only the following four classes:  

water, woody wetland, forest, and cultivated row crops/transitional barren.  The recoded 

images were then fed to the clump function for clumping a contiguous group of pixels in 

a single thematic class, (Interpreter ==> GIS Analysis ==> Clump) with 4 connected 

neighbors to smoothen out the image and reduce the output image’s grainy appearance.  

It assigns an isolated pixel surrounded by pixels of a dominating land cover class to be 

merged into the surrounding class (ERDAS Imagine 8.7 field guide).  Finally, the 

clumped pixels were then fed to the Eliminate GIS function (Interpreter ==> GIS 

Analysis ==> Eliminate) to eliminate clumps smaller than 2 hectares.  Initially a 1 hectare 

eliminate filter was used, which produced a grainier appearance but after comparing with 

a 2 hectare eliminate filter I felt that the visual appearance of the final change detection 

image would be slightly improved with a 2 hectare eliminate filter. 

 

 41



Table 5: Classification scheme 

Land cover class Description (Land use) Recoded 
value 

Water Streams, Lakes, and Rivers. 1 

Woody Wetland Forested wetland or shrubland vegetation and where 
either soil or substrate is saturated with water. 

2 

Forest Deciduous, Evergreen, Mixed forest with logging and 
including downed trees. 

3 

Cultivated row 
crops / transitional 
barren 

Herbaceous vegetation and crops.  Clear-cut forests 
in various stages of regrowth.   

4 

 

(Modified and adapted from: Anderson et al. 1976, Cablk et al. 1994, Lillesand and 
Kiefer 2004, Read and Lam 2002, USGS NLCD 2000) 
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After the individual images were classified, to generate a change detection image, 

a GIS matrix analysis was performed (Interpreter ==> GIS Analysis ==> Matrix).  The 

default “Intersection” operation was selected with an 8-bit unsigned output.  The result 

was an image with from-to change classes.  A from-to class with more than 5000 pixel 

count was color coded in the change detection image.  The rest of the from-to change 

classes were ignored to reduce the complexity of interpretation due to presence of many 

different colors.  An Interpreter ==> GIS Analysis ==> Summary command was also run 

on the individual classifications, with the zone file as the 1989 classification and the input 

file as the 1987 classification. 

3.3.3 Digitization of Aerial Photographs 
 

Two aerial photographs were scanned in the CADGIS Lab of Louisiana State 

University using an Advent Colortrac 52” Color scanner with a maximum resolution of 

800 dpi.  The 20” by 20” images, with 1-inch margins on all sides, were scanned with 

three cameras corresponding to RGB into TIFF format.  They were digitized with a 0.66-

meter pixel resolution.  These were then imported to ERDAS Imagine 8.7 as a native 

.img file, and geometrically corrected using polynomial transform individually to the 

1989 Landsat image for easier pixel-to-pixel comparison of the input and reference data 

for accuracy assessment.  A difficulty found during the geometric correction procedure 

was the absence of quality GCP’s.  Geometric correction was more time consuming for 

the aerial photographs to the reference 1989 image compared to the registration of 

Landsat scene of 1987 to the reference of 1989.  The actual number of GCP’s was chosen 

such that they were not obscured by vegetation or wetland in each air photo image.  

GCP’s were chosen at visible road intersections, or corner areas, which were unchanged 
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in the input and reference images.  The number of GCP’s for the 1987 air photo to 1989 

Landsat image registration were 10 with a 14.08 meter RMS error, and for the 1989 air 

photo to the 1989 Landsat reference was 11 GCP’s with a 12.92 meter RMS error.  It 

should be noted that the digitized aerial photographs were set to the exact same 

projection/spheroid as the Landsat images.  The aerial photographs were also resampled 

to the lower resolution of the Landsat TM images of 28.5 meters by 28.5 meters.  

Resampling allowed me to do a Geo link between the two viewers, and make it easier to 

find land cover features, but the scanned aerial photograph was used for classification 

accuracy.  This resulted in a grainier looking output photos with hard edge transitions, 

which does not totally correspond to the original due to the mismatched spatial scales. 

3.3.4 Accuracy Assessment of Classification 
 
 The accuracy assessment for the study used a stratified random sampling scheme 

with a 3x3 window size pixel majority filter (Congalton 2001).  The class values were 

assigned based on a window size of 3, with a ‘Clear Majority’ window majority rule, and 

a ‘Discard Window’ action in absence of a majority.  Initially, a total of 256 points for 

accuracy assessment per image were generated using stratified random sampling and 

selecting only the classified land cover classes and excluding the default unclassified 

class.  This number of accuracy assessment points ensured that all of the land cover 

categories would contain the recommended 50 points (Congalton 2001).  Since the study 

area in the air photo is approximately 8.8 km by 8.8 km, this translates to about 308x308 

pixels, which yields 94,864 pixels available for reference.  However, the subsetted 

Landsat scenes contained 400 rows and 462 columns, which yield 184,800 pixels.  The 
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additional area was covered in this study because the hurricane damage was noticeable in 

the Wambaw swamp and the Coffee creek swamp. 

Initially, I selected stratified random sampling with the default 10 minimum 

points, but since the water class with a very small area covered in the 1987 image was 

also elevated to 10 points, the overall accuracy was reduced, so minimum points was 

discarded from further analysis, just a regular stratified sampling was used.  The random 

points were sometimes generated on the edge of the aerial photographs where there was 

no data, or outside of the spatial extent of the air photos; such points were deleted from 

further analysis.  Since more than a third of points were deleted due to these reasons in 

both the 1987 and 1989 accuracy assessment, additional random points were added in 

increments of 30 for selected land cover classes to make sure each land cover class would 

be covered with at least 50 points.  Due to this, about 194 and 266 random points were 

finally selected for accuracy assessment in the 1987 and 1989 images respectively.  The 

water class was not represented with the required 50 sample points, because it had an area 

representing less than 1 % area for the 1987 classification.  The points would not have 

been truly random but would have been highly clustered. 

Classified points were finally compared to the digitized aerial photographs to 

determine the land cover class of the input data within a given area; and not as a true 

pixel-by-pixel comparison, to partially overcome the mismatch in the spatial scales 

between the Landsat 28.5 meter resolution and the down sampled reference air photos.  

After the completion of the reference and input points matrix a report was generated, 

which consisted of the user’s accuracy, producer’s accuracy, overall accuracy, the 

confusion matrix, and the Kappa statistics.   
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3.3.5 Field Trip: GPS Points Collection Procedure and Interviews 
 

Initially, before the field trip the cultivated row crops class was classified as 

barren.  After a meeting with Ms. Antoinette “Tonee” Davis, Forester, USDA Forest 

Service, FMNF Wambaw Ranger District, I got the information that there is no barren 

class inside the FMNF, it was therefore necessary to redo the classification procedure.  

She further told me that the cultivated row crops class is usually where the shrubs and 

grasses like Bahia grass, rye grass, sunflower etc. are planted, specifically for sustaining 

the quail and turkey population in the FMNF.  A couple of landowners, James A. 

Matthews and Gloria Smock, informed me that the abundant sand encountered in the 

study area on the dirt roads, near road intersections, and adjacent clearings was due to 

past hurricanes including Hugo.  This process dumped many sediments into the Wambaw 

and Coffee creek swamps, and Little Wambaw wilderness allowing for their regeneration 

due to the creation of short lived barren areas of sandy flats (Conner 1998). 

The GPS points were chosen to be collected as distinct point features for the four 

land cover classes in the study: water, woody wetland, forest, and cultivated row 

crops/transitional barren.  Unfortunately, most of the cultivated row crops class inside the 

study area is privately managed and for the “Thompson Corner” and “Mechaw” areas, 

which are the biggest cultivated row crops areas, no GPS points could be taken since 

permission was not acquired.  GPS positions were taken along roads and wilderness trails 

identifiable in the 1987 and 1989 image hard copies.  GPS positions were taken for a 

maximum of 300 meters distance on either side of the roads and wilderness trails to avoid 

being lost in the dense vegetation.  GPS points were recorded in the UTM, GRS 1980, 

NAD 83, with Zone 17 North setting with a minimum number of satellites set as four.  
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Positions were automatically discarded when insufficient satellites were present or there 

was poor geometry for the satellites. 

Post-processing was performed in Baton Rouge; the data was uploaded into a PC, 

and then differentially corrected using the default “Smart Code and Carrier Phase 

Processing”.  The reference station of CORS, Florence Darlington Technical College, 

South Carolina, which was 130 km from the study area where the points were logged was 

selected.  The data for 53 GPS points, which was differentially corrected, was then 

exported to the “Sample Arc/INFO (NT) Generate Setup” which produced two files: a 

GPS Point Id vs. Feature class and the GPS Point Id vs. UTM coordinates.  Seven more 

positions were added manually, all from the Wambaw swamp area, which could not be 

logged due to poor geometry problems.  These positions were recorded in a scrapbook, 

by noting down adjacent GPS positions with the approximate offsets in meters where 

recording was possible. 

 ArcView was used to join these two tables and create a combined shapefile with 

an “Add Event theme” option, and was then used in ERDAS Imagine for an overlay over 

the classified images for validation. 

3.3.6 PCA Change Detection Procedure 
 
 For PCA, only the geometrically rectified 3 band DN images are used as input.  

The thermal band is not used in the analysis to maintain consistency with hybrid 

classification.  Output is chosen to be stretched to 8-bit unsigned, with the desired 

principal components as six.  The eigen matrix and eigenvalues are written to separate 

files.  This procedure is repeated for both the 1987 and 1989 images.   
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3.3.7 TCT Change Detection Procedure 
 

For TCT, the radiometric pre-processed images with floating point is used as 

input, with the output stretched to 8-bit unsigned, and the selection of the coefficients for 

either Landsat 4 or 5 according to the inputs from the header files.  The thermal band is 

not used in the analysis because of the need for radiometric correction, which assumed an 

absent thermal band.  This procedure was repeated for both the 1987 and 1989 images.  

The TCT equations for the Landsat 4 and Landsat 5 for the generation of the brightness, 

greenness, and wetness are listed in Appendix C. 

3.3.8 Fractal Change Detection Procedure 
 

For fractal analysis, the same subsets as that for the PCA and hybrid classification 

are used as input.  To maintain consistency with the other analyses, the thermal band is 

stripped out for analysis.  Moreover, NDVI derived from the two images, instead of 

individual bands were used for change detection.  Therefore, the NDVI .img files are 

imported to the ERDAS 7.X LAN format, and fed to the ICAMS (Image Characterization 

and Modeling Systems) software, which produces separate NDVI .BSQ file for further 

analysis. 

A “Local Triangular Prism” with varying moving window sizes of 9x9 pixels to 

33x33 pixels, with a fixed five steps increasing arithmetically and geometrically, with the 

floating point images stretched to 8 bits with 2 standard deviations, was run on the two 

1987 and 1989 NDVI files to produce a local fractal representation of the NDVI images.  

The moving window is experimented because a large number of methods for spatial 

analysis in a wide range of scientific fields are conceptually based on the moving window 

for discerning spatial patterns (Dale et al. 2002, StOnge and Cavayas 1997). 
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Finally, the resulting fractal transformed image files, which are in .BSQ file 

format, are fed to the difference function in ICAMS to produce a corresponding change 

detection output image. 

To examine whether land cover change can be measured by the change in fractal 

dimension values.  A fractal dimension to land cover classification Zonal Statistics for 

both 1987 and 1989 was performed using the Interpreter ==> GIS Analysis ==> 

Summary command with the fractal image file used as the input file and the classified file 

used as the zone file.  The summary command requires a thematic integer image so the 

floating point local fractal file had to be converted.  The file was imported into Imagine 

with the ‘Generic Binary’ option as an IEEE 32-bit float data type, an image record 

length of 1848, with the rows and columns equal to 400 and 462 respectively.  The ‘Map 

Info’ and the projection information for this imported file were then set equal to the 

classified file.  Model Maker was then used to multiply the D values by 100 and round 

them out to produce a 16 bit unsigned thematic file.  A D value of 2.81 would thus be 

represented as 281 in the file. 



CHAPTER 4:  RESULTS AND DISCUSSION 
 

This chapter will present the results of the study with the following sequence: 

accuracy assessment of classification, change detection through classification, GPS 

results, PCA analysis, TCT analysis, and finally the Fractal analysis using the modified 

triangular prism method as implemented in ICAMS. 

4.1 Accuracy Assessment of Classification  

 Figure 8 shows the study area as acquired from a scanned hard copy printout of 

FMNF from the USDA Forest Service, Wambaw Ranger District.  Figures 9 and 10 show 

a photo of a typical woody wetland area.  Figure 11 and 12 show the resultant classified 

images, and Figure 13 shows the changes.  The full error matrix, the user’s and 

producer’s accuracy tables, Kappa statistics are presented in Tables 6 and 7 for the 1987 

and 1989 classified images.  A look at the pre-event image error matrix dated October 14, 

1987 yields us an overall image classification accuracy of 81.44 % and for the October 

11, 1989 post-event image is 85.71%.  The overall Kappa statistic for the 1987 image is 

0.7183, and for the 1989 image is 0.8004.  The relative area of each individual land cover 

class for the October 14, 1987 and the October 11, 1989 classifications is as follows in 

Table 8.  Overall classification accuracy for the 1987 is lower than the 1989 image, and it 

is due to the fragmented nature of the 1987 image during the classification process.  

4.1.1 Results for Individual Land Cover Classes 

 The most significant finding is that the percentage of water in the post event 

image is 4.07% (607 hectares), which clearly substantiates the findings of Cablk et al. 

(1994), that the hurricane caused an increase in water due to the storm surge.  The  
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Figure 8: ArcView printout of the study area 
 
(Source: USDA Forest Service, Francis Marion National Forest, Wambaw Ranger 
District, 2004) 
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Figure 9: A woody wetland scene from the Coffee creek swamp 

 

 
Figure 10: Woody wetland scene from the Wambaw swamp 
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Figure 11: Classified image for 1987 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12: Classified image for 1989
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Table 6: 1987 Classification statistics 
 
 
Reference landcover data 

Classified  Water 
Woody   
wetland 

    
Forest 

Cult. row 
crops/ 

 
Classified Number Producers Users Kappa 

landcover data    trans. barren Totals Correct  Accuracy Accuracy  
          

          Water 0 0 0 0 0 0 0.00 % 0.00 % 0.0 
 Woody Wetland 0 65 5 1 71 65 74.71 % 91.55 % 0.8468 

         Forest 0 13 51 3 67 51 83.61 % 76.12 % 0.6517 
Cult. row 

crops/trans. barren 0 9 5 42 56 42 91.3 % 75.00 % 0.6723 
          

Reference Totals 0 87 61 46 194 158    
 
 
 
  Overall Classification Accuracy  =   81.44% 
  Overall Kappa Statistics   =  0.7183 
 
 
 
 
 
 
 
 
 

Table 7: 1989 Classification statistics 
 
 
Reference landcover data 

Classified  Water 
Woody   
wetland 

    
Forest 

Cult. row 
crops/ 

 
Classified Number Producers Users Kappa 

landcover data    trans. barren Totals Correct  Accuracy Accuracy  
          

          Water 44 7 0 0 51 44 100 % 86.27 % 0.8355 
 Woody Wetland 0 95 7 0 102 95 82.61 % 93.14 % 0.8791 

         Forest 0 10 49 2 61 49 75.38 % 80.33 % 0.7397 
Cult. row 

crops/trans. barren 0 3 9 40 52 40 95.24 % 76.92 % 0.7260 
          

Reference Totals 44 115 65 42 266 228    
 
 
 
  Overall Classification Accuracy  =   85.71% 
  Overall Kappa Statistics   =  0.8004 
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Table 8: Classified area of land cover classes for 1987 and 1989 

 
Land cover class Area in hectares Percent area (%) Area in hectares Percent area (%)

 1987 1987 1989 1989 
     

Water 5.35 0.04 607 4.07 
Woody wetland 7455.16 50.01 8214.2 55.1 

Forest 6739.48 45.21 5362.15 35.97 
C.R.C/T.B 706.83 4.74 723.47 4.85 

     
Total area 14906.82  14906.82  
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distribution of the woody wetland areas has become more widespread connecting a 

contiguous area over the Wambaw, Coffee creek swamps, and the Little Wambaw 

wilderness.  Woody wetland area has been lost outside the contiguous swamps mostly to 

the forest class; this is confirmed from Figure 13. 

 The forest class has declined from 45.21% (6739.48 hectares) to 35.97% (5362.15 

hectares) from 1987 to 1989.  Figure 13 visually confirms that a major portion of the 

1987 forest area has been lost to woody wetland, water, and cultivated row crops classes 

in decreasing order of area outside the three designated swamps. 

 The total area of cultivated row crops/transitional barren class has increased 

slightly from 4.74% (706.83 hectares) to 4.85% (723.47 hectares) due to the hurricane.  

But the maximum gain has been recorded by the water and woody wetland classes at the 

expense of the forest class, which is interesting.  Looking at the Landsat TM subset of the 

study area by overlaying it on top of the original Landsat scene acquired from USGS as 

shown in Figure 5 it is clear that the storm surge would have come in from the Bulls Bay, 

which protrudes landwards.  The path of the hurricane was to the west of the study area 

on 21-24 September 1989 (Hook et al. 1991), and the storm surge from the hurricane 

would have penetrated the study area.  During the intervening period from the end of the 

hurricane and the Landsat scene acquisition date of 11 October 1989, the surge might 

have caused the increase in moisture content, which show up in the post-event 

classification.  Cablk et al. (1994) state that the storm surge, which was approximately 4 

meters above the mean sea level, traversed the barrier islands adjacent to the Bulls Bay 

on the coast, and temporarily caused salt water flooding.  From the NCDC website 

(NCDC 2004) the month of October 1989 caused 4.18 inches of precipitation with a rank 
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of 84 in the period of record from 1895 to 2004.  This proves that the classification was 

not biased towards enhanced moisture classes. 

4.1.2 Results for Errors of Commission (User’s Accuracy) and Omission (Producer’s 
Accuracy) 
 

It should be recalled from the literature review that user’s accuracy represents 

reliability of classified pixels and producer’s accuracy measures the performance of the 

analyst in taking samples for each class. 

The errors of omission (producer’s accuracy) for the woody wetland and forest 

classes, and error of commission (user’s accuracy) for the forest and cultivated row 

crops/transitional barren class were the major limiting factor affecting overall accuracy 

for the 1987 image.  A possible reason for the poor user’s accuracy for the forest and the 

cultivated row crops/transitional barren class in the 1987 classification is due to the 

fragmented occurrence of the classes in the original image.  This is possibly the same 

reason why it was hard to classify the woody wetland and forest classes by the analyst in 

1987 resulting in low producer’s accuracy for the woody wetland and forest classes in 

1987. 

The major factor limiting the overall accuracy of the 1989 image was the low 

user’s accuracy (error of commission) and the low producer’s accuracy (error of 

omission) for the forest class.  A possible reason for the low user’s accuracy in the 1989 

classification for the forest class is due to the homogeneous nature of the study area after 

the hurricane, which made it difficult to represent small forested areas.  A probable 

reason for the low producer’s accuracy for the forest class for 1989 is due to a possible 

misclassification around the Wambaw swamp and Little Wambaw wilderness. 
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4.1.3 Kappa Analysis Results 
 

As can be recalled from the literature review section, as Kappa approaches 1.0, 

the classification is accurate, and as it approaches 0, it indicates the classification is not 

better than the random agreement between the reference and the classified pixels.   

Overall, the conditional kappa was better for the 1989 image at 0.8004 as 

compared to 0.7183 for the pre-hurricane image.  For the 1987 image, the conditional 

kappa values for the forest and the cultivated row crops/transitional barren class were the 

lowest at 0.6517 and 0.6723 respectively, and the highest values was recorded for the 

woody wetland class at 0.8468.  For the 1989 image, the conditional kappa values for the 

forest and C.R.C/T.B class were the lowest at 0.7397 and 0.7260 respectively and the 

values for the woody wetland class the highest at 0.8791. 

In both the image classifications the combined woody wetland class was the most 

accurately represented as their class conditional kappa was the highest compared to the 

other classes of water, forest, and C.R.C/T.B classes.  The forest conditional kappa was 

low for the 1989 image at 0.7397, much better than the 0.6517 for the 1987 image, 

indicating that the classification for the 1989 image for forest class was more accurate. 

4.2 Change Detection Through Classification  

 Figure 13 is the change detection output produced by the matrix intersection of 

the 1987 and 1989 images of the study area.  Table 9 gives us the from-to change classes 

for the change detection classification.  It is clear that the forest area that has been ‘lost’, 

a total of 1377.33 hectares due to the hurricane and has become transformed into water 

and woody wetland classes.  The most interesting finding from Table 9 is the conversion 
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of the woody wetland class into forest class to the extent of 2206.56 hectares.  From 

looking at the change detection output image, the light green color denotes this finding. 

 This conversion can be explained possibly due to the storm surge, which 

inundated the Wambaw creek, Little Wambaw wilderness, and the Coffee creek swamps.  

Some of the heavily flooded area has remained as water, the low-lying areas saturated 

with water are classed as woody wetlands, while the receding areas close to the edge of 

the swamps has been classified as forest.  The post-event scanned aerial photograph 

before geometric correction contains visible uprooted and/or broken trees, known as 

blowdown/standing dead, which are evident when we zoom into the study area, but 

which are missing in the Landsat TM scenes (Cablk et al. 1994).   

 The ‘lost’ forest area actually contributes to make it evident that the Wambaw 

creek, Little Wambaw wilderness, and the Coffee creek swamps is contiguous.  On the 

other hand, the change detection image depicts the regenerated forest totally outside the 

three swamp areas, and in places where contiguous patches of forest were present before 

the hurricane struck the study area.  The major area which was regenerated into woody 

wetland was the forest – woody wetland class, which has an overall area of 3640.83 

hectares, mostly located inside of the Wambaw swamp, Coffee creek swamp, and the 

Little Wambaw wilderness, denoted by the Magenta color.  As a result, the hurricane 

makes the woody wetland and the forest boundary easier to distinguish in the post-

hurricane image, and finally in the change detection image.  The unchanged woody 

wetland area is represented by a light blue color, the unchanged forest area is denoted by 

a dark green color.  Blue color represents the conversion of the woody wetland area into 

water class. 
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Table 9: From-to change classes “Summary” with area in hectares 
 

  1987    

1989 Water 
Woody 
wetland Forest 

Cult. row crops/ 
trans. barren Total 

      
Water 4.22 0.24 0.89 0.00 5.35 

 (0.7 %) (0 %) (0.02 %) (0 %)  
      

Woody 
wetland 526.18 4536.01 2206.56 186.41 7455.16 

 (86.69 %) (55.22 %) (41.15 %) (25.77 %)  
      

Forest 74.89 3640.83 2842.63 181.13 6739.48 
 (12.34 %) (44.32 %) (53.01 %) (25.04 %)  
      

Cult. row crops/ 
trans. barren 1.71 37.12 312.07 355.93 706.83 

 (0.28 %) (0.45 %) (5.82 %) (49.20 %)  
      

Total 607 8214.2 5362.15 723.47 14906.82 
 (100 %) (100 %) (100 %) (100 %)  

 
 
N.B – The zone file was the 1989 classification while the input classified file was the 
1987 classification. 
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4.3 GPS Point Survey Results 

 An example overlay of the GPS points plotted in yellow on the 1989 classified 

image is shown in Figure 14.  The points are all clustered in areas, which are accessible 

from the roads and wilderness trails, and are not truly random.  The road names are the 

internal FMNF designated roads and are marked in Figure 14.  

Table 10 shows the GPS id’s with their UTM X and Y locations and the mappings 

for the 2004 using GPS, recoded 1987, and recoded 1989 images.  GPS locations were 

used to check for major classification problems and not for accuracy assessment due to 

the gap of almost 15 years after the hurricane occurred in 1989 and the current year of 

analysis of 2004. 

4.4 Change Detection Using PCA 

 Only the first three components were chosen for analysis because they have 

variances > 1 %.  For easier visual comparison, the individual principal components are 

displayed together for 1987 and 1989 in Figures 15 through 20.  The principal component 

variance for the two images is shown in Table 11.   For PC1 component, the 1987 image 

contains 74.43% variance whereas the 1989 image contains about 62.5% variance.  Both 

images show clearly the existence of the swamp of Wambaw creek, which was not 

revealed clearly during the classification procedure.  The 1989 PC1 image also displays a 

clear separation of the swamp from the surrounding feature classes with its high moisture 

content due to the hurricane.  The Cultivated row crops/transitional barren feature class is 

displayed clearly in PC1 for the 1987 image, but due to the increased area of the flats due 

to the hurricane, there is an increased albedo associated with the 1989 image.  The 

Cultivated row crops/transitional barren feature for 1987 PC1 is also the brightest  
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Figure 14: 56 GPS points in yellow overlaid on the 1989 classified image 
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Table 10: GPS point locations and class values for 1987, 1989, and 2004 

 

GPS 
point id Easting Northing 

GPS 2004 land 
cover 

classification 
1987 

classification 
1989 

classification 
      
1 630416.793 3663555.473 Forest Forest Forest 
2 630405.83 3663538.058 Forest Forest Forest 
3 630432.686 3663559.997 Forest Forest Woody Wetland 
4 630448.591 3663569.791 Forest Forest Forest 
5 630445.675 3663588.478 Forest Forest C.R.C / T.B 
6 630498.557 3663525.891 Forest Woody Wetland Forest 
7 630526.959 3663518.886 Forest Woody Wetland Forest 
8 630548.267 3663509.447 Forest Woody Wetland Forest 
9 630546.467 3663547.896 Forest Woody Wetland Forest 

10 633363.881 3664176.004 C.R.C / T.B Woody Wetland Woody Wetland 
11 633354.105 3664125.405 Forest Forest Woody Wetland 
12 633380.184 3664110.837 Forest Forest Forest 
13 633405.734 3664126.883 Forest Forest Woody Wetland 
14 633432.347 3664139.525 Forest Forest C.R.C / T.B 
15 633434.223 3664152.101 Forest Woody Wetland Woody Wetland 
16 633448.032 3664157.979 Forest Forest Woody Wetland 
17 633540.16 3664197.83 C.R.C / T.B Forest Forest 
18 633539.109 3664197.332 C.R.C / T.B Forest Forest 
19 633617.011 3664210.383 C.R.C / T.B Forest Forest 
20 633665.792 3664186.349 C.R.C / T.B Forest C.R.C / T.B 
21 634650.424 3661944.726 Woody Wetland Forest Woody Wetland 
22 634682.145 3661901.529 Woody Wetland Woody Wetland Woody Wetland 
23 634682.966 3661902.005 Woody Wetland Woody Wetland Water 
24 634718.947 3661869.668 Woody Wetland Woody Wetland Woody Wetland 
25 634745.836 3661848.35 Woody Wetland Forest Water 
26 634777.531 3661823.433 Woody Wetland Forest Woody Wetland 
27 636888.121 3664832.775 C.R.C / T.B Forest Water 
28 635841.554 3665962.827 C.R.C / T.B Woody Wetland Forest 
29 635815.396 3665956.624 C.R.C / T.B Forest Woody Wetland 
30 635823.901 3665982.613 C.R.C / T.B Forest Forest 
31 635858.901 3665938.899 C.R.C / T.B Woody Wetland Water 
32 635849.626 3665902.865 C.R.C / T.B Woody Wetland Woody Wetland 
33 635835.94 3665869.46 C.R.C / T.B Forest Forest 
34 635828.491 3665821.182 C.R.C / T.B Forest Forest 
35 635818.472 3665801.337 C.R.C / T.B Forest Forest 
36 635802.462 3665821.433 C.R.C / T.B Forest Forest 
37 635702.082 3667364.369 C.R.C / T.B Forest Forest 
38 635702.779 3667409.551 C.R.C / T.B Forest Forest 
39 635669.652 3667421.753 C.R.C / T.B Forest Forest 
40 635657.936 3667403.032 C.R.C / T.B Forest Forest 

 
          (table cont’d) 
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GPS 
point id Easting Northing 

GPS 2004 land 
cover 

classification 
1987 

classification 
1989 

classification 
      

41 633377.1 3668870.264 Woody Wetland Woody Wetland Woody Wetland 
42 633353.855 3668890.537 Woody Wetland Woody Wetland Woody Wetland 
43 633335.361 3668907.236 Woody Wetland Forest Forest 
44 633270.041 3669010.497 Woody Wetland Forest Woody Wetland 
45 633184.397 3669050.502 Woody Wetland Woody Wetland Woody Wetland 
46 633162.349 3669085.017 Woody Wetland Forest Forest 
47 633117.208 3669117.683 Woody Wetland Woody Wetland Woody Wetland 
48 633107.532 3669128.611 Woody Wetland Woody Wetland Woody Wetland 
49 633081.227 3669156.449 Woody Wetland Woody Wetland Forest 
50 630861.265 3668126.707 Woody Wetland Woody Wetland Forest 
51 630920.15 3668265.086 Woody Wetland Forest Forest 
52 630884.819 3668403.464 Woody Wetland Woody Wetland Woody Wetland 
53 630775.883 3668553.619 Woody Wetland Woody Wetland Water 
54 630634.561 3668747.937 Woody Wetland Woody Wetland Water 
55 630834.767 3668303.36 Woody Wetland Woody Wetland Woody Wetland 
56 630658.114 3668797.988 Woody Wetland Woody Wetland Woody Wetland 

 
 
N.B – C.R.C / T.B denotes cultivated row crops / transitional barren.  
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component with the bare patches of soil visible as bright patches of whitish hue, which may 

indicate cleared sections of land.  The dark tones in the 1989 PC1 image denote moisture with 

increasing gradation i.e. the darker the tone the more is the moisture content.  It is immediately 

clear of the decrease in vegetation for the Wambaw swamp with the increased blowdown for 

PC1 in the 1989 image.  The sediment load in the middle of the Wambaw swamp is noticeable in 

the 1989 image only for PC1. 

 The second principal component PC2 for both the images clearly delineates the forest 

boundaries with some amount of topographic relief, this also seems to emphasize the big forested 

area between the “Mechaw” and “Thompson Corner” private holdings as a bright patch in the 

study area, and the cultivated row crops/transitional barren class is denoted as a dark patch.   

For PC2, the 1987 image contains 19.72% variance, whereas the 1989 image contains a higher 

variance of 33.56%.  The roads are not emphasized for PC2 in both the images. 

 The third principal component PC3 is clearly useful only for the discrimination of the 

road feature, and displays large tracts of similar land cover class; the sensitivity to local height 

variations is decreased due to the presence of noise.  The Wambaw swamp and Coffee creek 

swamp are both discernible for both images.  The 1987 image contains 3.78% whereas the 1989 

image contains a lowered variance of 2.19%. 

 To conclude, changes can easily be visualized with principal component analysis because 

PCA correctly identified the two swamps, which were a dominant feature in the study area. 

4.5 Change Detection Using TCT 

The TCT bands for the brightness, greenness, and wetness components are shown for the 

1987 and 1989 images in Figures 21 through 26.  An interesting thing to note is that the 

Wambaw swamp and the Coffee creek swamp is discernible in all the tasseled cap bands for both 

the 1987 and 1989 images, though it is more pronounced in the 1989 imagery. 
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Figure 17: PC 2 for 1987 
 

 

Figure 18: PC 2 for 1989 
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Figure 19: PC 3 for 1987 
 
 

 

Figure 20: PC 3 for 1989 
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Table 11: PC component variance 
 
 

Principal 
Component 

1987 Percentage 
Variance 

1989 Percentage 
Variance 

   
PC1 74.43% 62.50% 
PC2 19.72% 33.56% 
PC3 3.78% 2.19% 

   
Total 97.93% 98.25% 
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For the brightness component for both the 1987 and 1989 images in Figures 21 and 22, the 

cultivated row crops/transitional barren and the woody wetland feature classes can be clearly 

distinguished in the images.  However, for the 1989 image in Figure 22, the water and woody 

wetland classes appear in darker shades.  The roads and cultivated row crops areas are 

discernible and appear as bright patches in both the images, but they appear better in the 1987 

image in Figure 21.  It is difficult to detect changes in the forest feature class in this band in both 

Figures 21 and 22, as it appears dull and is therefore hard to distinguish.  The sediment load in 

the middle of the Wambaw swamp is clearly discernible in Figure 22, while it appears as 

forested land in the 1987 image in Figure 21.  It is hard to separate out water from the woody 

wetland class for the 1989 image in Figure 22, but it was impossible to find the water and woody 

wetland class in the 1987 image in Figure 21. 

The greenness component displays the forested or vegetated areas as very bright for both 

1987 and 1989 in Figures 23 and 24 respectively.  In the 1989 image, the forest class appears 

brighter as confirmed from the woody wetland patch in Figure 24.  The 1989 image in Figure 24 

seems to emphasize the water/woody wetland class compared with the 1987 image in Figure 23 

where it was faintly discernible.  Both the 1987 and 1989 images as a whole appear dull for the 

cultivated row crops/transitional barren classes with the road areas almost completely obscured 

in Figures 23 and 24 respectively.  The greenness band displays the sediment load in the middle 

of the Wambaw swamp for the 1989 image in Figure 24 better in comparison with the 1987 

image in Figure 23.  There is a change in the cultivated row crops feature class, which is colored 

dark for the 1987 image but for the 1989 image it is indistinct.  A possible explanation for the 

disappearance of the cultivated row crops class in Figure 24 is that the storm surge might have 

deposited sediments and salt residues, making it hard to distinguish in this greenness band. 
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Figure 23: TCT greenness for 1987 
 
 

 

Figure 24: TCT greenness for 1989 
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Figure 25: TCT wetness for 1987 
 
 

 

Figure 26: TCT wetness for 1989 
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The wetness component is the most complicated band to analyze.  For the 1987 image, 

the cultivated row crops features are better represented as dark patches, but in the 1989 image in 

Figure 26, they have changed to appear indistinct from the neighboring features.  The roads, 

which were faintly visible in Figure 25 for the 1987 image, have been obscured by the 

dominance of the moisture due to the woody wetland/forest classes in Figure 26 for the 1989 

image.  The big woody wetland patch between the “Mechaw” and “Thompson Corner” places is 

identified in both the images, but it is easier for the 1989 image in Figure 26.  The woody 

wetland and forested classes are hard to distinguish in the pre-event image in Figure 25 but 

become easier because the forested areas appear brighter for the 1989 image in Figure 26.  The 

sediments in the Wambaw swamp are hard to distinguish in the 1989 image but are faintly 

evident in the 1987 image in Figure 25.  The water and woody wetland classes are hard to 

discriminate for the 1989 image in Figure 26 but rather they appear to be lumped together into a 

single class.  This band is clearly useful to specifically sense moisture, either soil, plant or actual. 

In general the TCT bands are easier for change analysis compared to those of the PCA 

because of the nature of the study area, which consists of moisture (water and woody wetland 

classes), and forest classes. 

4.6 Change Detection Using the Local TPSA Fractal Method 

The discussion below refers quite often to Figure 8, which is the printout obtained from 

ArcView from the FMNF Wambaw Ranger District office.  A step size of five was chosen for 

the analysis to ensure a reliable estimate of the fractal regression line.  A smaller value of step 

size would have less confidence and a larger value would require a larger local moving window 

size for computing the fractal dimensions.  This step size made it possible to evaluate different 

moving window sizes from 9x9 pixels to 33x33 pixels with both arithmetically and 

geometrically increasing steps with sufficient confidence in the results. 
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Spatially complex/heterogeneous (heterogeneity) areas are those regions which have a 

relatively high D value compared to its surroundings; they are generally brighter in color.  

Spatially homogeneous (homogeneity) areas are those regions which have a relatively low D 

value compared to its neighbors, and are generally darker in color. 

4.6.1 Choice of Moving Window Size 
 

It was found that of all the moving window sizes tested for this study the 17x17 moving 

window with arithmetically increasing steps was the best in representing land cover features for 

the 1987 and 1989 images.  This moving window size produced an image with a good tradeoff 

between the edge effects and the identification of spatial patterns.  The texture patterns begin to 

emerge and the actual land cover features start to blur out for this particular window size.  This 

17x17 moving window gives a fairly stable fractal regression with decreased noise.  Based on 

visual examination the moving window size was found to be directly proportional to edge effects 

in the local TPSA outputs.  The 9x9 moving window with arithmetically increasing steps had the 

most correlation with landcover features with least edge effects, and the 33x33 moving window 

with geometrically increasing steps had the opposite results i.e., least correlation with landcover 

features with most edge effects.  The regression procedure of the TPSA algorithm therefore 

places a practical lower limit on the size of the moving window, decreasing the size of the 

window below 9 increases the amount of noise considerably and possibility of spurious D 

outliers.  For visual comparison, the other moving window sizes are listed in Appendix A in 

Figures 35 through 52. 

Figures 30 and 32 show the smoothed local TPSA images for 1987 and 1989 using a 

(convolution) low pass filter of 5x5 pixels.  It is used to view the spatial patterns in the local 

TPSA output without the hard class transitions caused by the roads in the study area. 
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Figure 29: TPSA for 1987 with 17x17 MW with 5 Arithmetic steps 

 

Figure 30: Same image after a 5x5 convolution low pass filter 
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Figure 31: TPSA for 1989 with 17x17 MW with 5 Arithmetic steps 
 

 

Figure 32: Same image after a 5x5 convolution low pass filter 
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Figure 33: Change detection TPSA with 17x17 MW with 5 arithmetic steps 

 

Figure 34: Same image after a 7x7 focal majority filter 
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4.6.2 Analysis for the 1987 and 1989 NDVI Images 
 

The input NDVI images used in the modified triangular prism method analysis are shown 

in Figures 27 and 28.  In general, for unscaled NDVI images the pixel values range from -1.0 to 

+1.0.  Values less than zero indicate non-vegetated land cover features, with values close to -1.0 

representative of moisture classes of water/woody wetland, and near to 0 indicative of barren 

features.  Increasing positive values are representative of increasing density of vegetation 

(Lillesand and Kiefer 2004).  The prominent landcover features are marked on both NDVI 

images for easier recognition, and for subsequent reference in the analysis. 

The NDVI input image for 1987 emphasizes the roads, as the road network is 

prominently visible in the image; also faintly visible is the separation of the cultivated row 

crops/transitional barren areas from the forested area.  The woody wetland is not clearly 

discernible but the meandering Wambaw swamp is discernible, the Coffee creek swamp is 

slightly obscured.  The patch of forest between the “Mechaw” and the “Thompson Corner” in the 

center of the study area is very bright and the forest class is distinguished over the swamp.  This 

agrees with the hybrid classification procedure.  The Mechaw plantation is shown as having dark 

tones, along with the other cultivated row crops areas in the study area.  The 1987 NDVI input 

image had a standard deviation of 12.36, which is low. 

The 1989 NDVI image emphasizes water, woody wetland, and forested land cover 

classes, the road network and the cultivated row crops feature class is obscured in the image.  

The woody wetland class is discernible throughout the meandering Wambaw swamp and the 

Coffee creek swamp is clearly revealed.  The big patch of forest between “Mechaw” and the 

“Thompson Corner” in the study area appears brighter than the 1987 image and the forest class is 

clearly distinguished from the swamp in the NDVI output.  The overall visual impression is that 

the 1989 NDVI is more spatially homogeneous because of the hurricane.  The NDVI input image 
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had a standard deviation of 16.34, which is higher than the 1987 standard deviation.  It may 

appear that there is a disconnect, but the standard deviation is an spatial statistical measure and 

the fractal dimension is a spatial measure, high D values can have low standard deviation and 

vice versa. 

4.6.3 Analysis for the 1987 Local TPSA Image 
 

Figures 29 and 30 represent the 17x17 fractal transformed output with five arithmetically 

increasing step sizes, and the 5x5 convolution image with low-pass filter respectively (LPF 

hereafter).  The most dominant feature visible in Figure 29 is a jagged image wherever there is 

abrupt transition between different land cover classes.  This is evident throughout the image 

because the NDVI image for 1987 has a prominent network of roads.  The dark tone patches in 

this image exclusively represent the cultivated row crops class which displayed high 

homogeneity. 

Moving the mouse cursor over adjacent D values revealed that they are smooth with a 

maximum of 3% variation internally within the darkest and brightest tones.  That is a pixel with a 

D of 2.7 will have adjacent pixels with D values ranging from 2.62 – 2.78.  Transition zones 

where the colors change abruptly have fairly high D variation of approximately 10% with a pixel 

of D = 2.7 producing adjacent pixels with D values ranging from 2.43 – 2.97.  The spatial 

variability is more when there is a complicated mix of high fractal dimensions from the sediment 

loadings in the Wambaw swamp, the Little Wambaw wilderness, and the road network.  In the 

discussion below I will refer to Figure 30. 

4.6.3.1 Road Network 
 

The abrupt transitions in land cover classes due to the presence of roads i.e., the spatial 

heterogeneity, has diminished considerably but is still visible as dark lines on a bright 
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background in the 5x5 LPF image.  A 3x3 box is clearly visible in the top left of the image where 

the “Round pond trailhead” exists.  Squares start to form because the moving window size 

matches and captures the land cover repeatability.  The relatively little change in spectral 

characteristic for the road area in the NDVI input image for 1987 produces consistently high D 

values in the range between 2.6 – 3.0 for the road features.  An interesting observation is that the 

jagged lines appear symmetrical and parallel to the road network which causes a transition i.e., a 

line appears during the forest or woody wetland transition to road, and again when the road 

transitions into the forest or woody wetland class.  Overall, the image has a bright lattice 

structure, which indicates that there is a repeatability of the abrupt breaks due to short area land 

cover class transitions. 

4.6.3.2 Wambaw Swamp 
 

The 5x5 LPF image displays the Wambaw swamp as a bright oval area with high D 

values surrounded with circular patches of low D values of cultivated row crops in dark tones.  

The spatial pattern of the Wambaw swamp looks like a pincushion.  The oval surrounds an area 

of high albedo due to the presence of sediment load.   

4.6.3.3 Little Wambaw Wilderness and Coffee Creek Swamp  
 

The merge of the Wambaw swamp and the Little Wambaw wilderness, and the Coffee 

creek swamps can be spotted as a pattern with high D values sandwiched on either side by 

patches of dark spots representing cultivated row crops feature class with low D values.  The 

Little Wambaw wilderness has a high amount of sediment loadings equivalent to the Wambaw 

swamp.  The Coffee creek swamp in comparison is very tiny in size, and has a grayish tone 

indicating low to medium range of D values. 
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4.6.3.4 Woody Wetland Patch 
 

The woody wetland patch is not emphasized at all; in fact, it is virtually masked out by 

the Mechaw place, indicating it is fairly homogeneous.  Another thing detected for this image is 

the relative stable D variation of the big forested patch and the adjacent cultivated row crops 

class, so much that it appears to be to be the same feature.  This relative homogeneity of the big 

patch of forest led to it being categorized along with the nearby patch of cultivated row crops 

area in the 1987 triangular prism output, as a mixed class. 

4.6.3.5 Cultivated Row Crops  
 

The cultivated row crops class influence is more pronounced as the edge effects are 

increased with increase in the moving window size.  The cultivated row crops features appear 

dark in color and are emphasized throughout the image, as there is uniformity in spatial variation 

for the cultivated row crops area, there is not much visible class transitions, i.e. it displays 

homogeneity. 

4.6.4 Analysis for 1989 Local TPSA Image 
 

For the 1989 fractal transformed output in Figures 31 and 32, the most obvious feature is 

the dominance of the water feature class.  The plume of water as it meanders through the 

Wambaw swamp and Coffee creek is clearly visible in dark tones, which has a D value ranging 

from 2.4 to 2.6, from moving the mouse cursor in ICAMS, denoting a less complicated and 

uniform spatial variation for the water/woody wetland feature classes.  The dark tone patches in 

this image exclusively represented the water and woody wetland classes, which displayed high 

homogeneity.   

Overall, the 1989 image in Figure 31 has less overlap between the forested and woody 

wetland classes and appears darker, which denotes a gain in homogeneity.  The spatial variability 
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for the sediment loadings in the Wambaw swamp has increased compared to the 1987 image 

with a complicated mix of high fractal dimensions.  Transition zones where the colors change 

abruptly have fairly reduced D variation of approximately 5% with a pixel of D = 2.7 producing 

adjacent pixels with D values ranging from 2.56 – 2.84, except for areas surrounding the 

Wambaw swamp where the adjacent pixels vary by as much as 20%.  The edge transitions for 

the water and woody wetland classes is prominently displayed i.e., a transition from a zone of 

low or high moisture like woody wetland to cultivated row crops or vice versa is detected.  In the 

following discussion I will refer to Figure 32 which represents the 5x5 convolution image with 

low-pass filter (LPF hereafter).   

4.6.4.1 Road Network 
 

The road feature class is now obscured in this image with the presence of a lot of noise.  

The abrupt land cover feature transitions so clearly evident in the 1987 image are smoothed out 

due to the relatively low D values.  The lattice framework appearance of the image makes it 

fairly difficult to fix the occurrence of the road network in the study area. 

4.6.4.2 Wambaw Swamp   
 

The sediment load in the middle of the Wambaw swamp has been emphasized a lot ; the 

swamp displays sediments with high D values and the surrounding vegetation on top of the water 

surface with relatively low D values.  The shape of the Wambaw swamp, which was unclear in 

1987, is now very clear in 1989 due to the sediment loadings and the reduction of the trees over 

the Wambaw swamp as reported in Hook et al. (1991).  

4.6.4.3 Little Wambaw Wilderness and Coffee Creek Swamp  
 

The Little Wambaw wilderness and the Coffee creek swamp are clearly visible.  An 

interesting finding is that for the 1989 image, the dark tones representing water/woody wetland 
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classes surround the bright tones of sediments for both areas.  This indicates that the underlying 

spatial patterns are altered considerably which is explained due to the residual storm surge 

surrounding the swamps.  A small bright 3x3 square is formed above the bend where Wambaw 

swamp merges with the Little Wambaw wilderness.  This square is important because it is 

discernible with the larger moving window sizes but the other squares in the image disappear.   

4.6.4.4 Woody Wetland Patch 
 

The woody wetland near “Mechaw” appears to be divided into two distinct areas.  One 

area has very low range of D values from 2.3 – 2.6, obtained by moving the mouse cursor in 

ICAMS, and the other smaller zone has consistently high D values ranging from a minimum of 

2.75 to 3.05. 

4.6.4.5 Cultivated Row Crops 
 

In this image the cultivated row crops class is obscured which is a very big change from 

the 1987 image where it formed the most dominant spatial patterns.  In this 1989 image the most 

dominant class is the woody wetland in the Wambaw swamp with consistently high local fractal 

dimensions. 

4.6.5 Change Detection of Local TPSA Image 
 

Figure 33 is the change detection output and Figure 34 shows the change detection figure 

passed through the focal (neighborhood) majority function with a 7x7 pixel filter accessed 

through the viewer (Raster ==> Filtering  ==> Statistical Filtering).  The difference image was 

produced with the ICAMS Difference option by subtracting the 1987 image from the 1989 

image.  Since this is a difference image, a positive difference in D values shows up as bright 

tones and a negative difference shows up as dark tones in the image.  The positive difference 

implies that the 1989 image had a higher fractal dimension for a pixel than the 1987 image, and 
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vice versa.  Therefore, a positive value in the change image denotes an increase in spatial 

complexity, and a negative value implies a drop in spatial complexity.  For change detection, we 

are interested in areas that have the largest difference in D values in both positive and negative 

directions.  Therefore, the 7x7 focal majority function image in Figure 34 is used in the analysis 

to enhance the largest positive and negative changes in spatial patterns due to the hurricane. 

A first glance at the change detection image shows that the cultivated row crops feature 

class, which includes the Mechaw plantation, shows a noticeable decrease in spatial complexity 

due to its dark tones.  The white tones, which denote increased spatial complexity is present 

where either the sediments were deposited over the Wambaw or Coffee creek swamps, in top left 

corner near the “Round pond trailhead” area and near the southeastern corner of the study area.  

Most of the change detection image has a gain of homogeneity because the overall tone of the 

study area is dark, with the presence of low to moderate negative D difference values. 

Most of the area covered by the Wambaw swamp, Coffee creek swamp, and the Little 

Wambaw wilderness has shown a gain in homogeneity due to its low to moderate negative D 

difference values.  A small part of the woody wetland patch between Mechaw and the 

“Thompson corner” has a spatial complexity increase, but the major forested area has a low to 

moderate negative D difference values.  It is interesting to note that the abrupt feature class 

transitions, which followed the road feature class, are completely obscured in the 7x7 focal 

majority image.  As in the 1987 and 1989 images, the squares with low to moderate D difference 

values are formed in the original change detection image over the cultivated row crops areas, but 

are transformed into high negative D difference values because of the 7x7 majority filter. 

4.6.6 Zonal Statistics for Correlation of Classified Land Cover Areas to D Values 
 
 Tables 12 and 13 give the fractal dimension distribution as generated by the modified 

local TPSA method shown with the associated land cover classes.  The fractal dimension values 

 87



generated in the Summary operation were divided by 100 to produce the actual results shown in 

the table.  One thing which immediately stands out from the tables is that the 1987 D distribution 

is more spatially complex.  This is indicated by the D value where the mean and median for the 

1987 correlation are all higher compared to the 1989 correlation.  For both 1987 and 1989, the 

woody wetland and forest classes, which have the highest majority count are almost similar 

when comparing their fractal dimension values.  The woody wetland class has a mean of 2.66 

and median of 2.82 for 1987 which then drops to a mean of 2.5 and a median of 2.64  for the 

1989 correlation.  The forest class has a mean of 2.61 and a median of 2.83 for 1987 which then 

drops to a mean of 2.42 and a median of 2.64 for the 1989 correlation. 
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Table 12: Classification to Fractal Dimension Zonal Statistics for 1987 

 
Zone 
Name Majority Mean Median Min. Max. Range Diversity 

Std. 
Dev Majority Majority 

         Count % 
Water 2.73 2.74 2.75 2.5 2.99 0.5 0.36 0.10 7 10.61% 

Woody 
wetland 0 2.66 2.82 0 3.41 3.42 1.14 0.68 5451 5.93% 
Forest 0 2.61 2.83 0 3.45 3.46 1.15 0.77 6534 7.85% 

C.R.C/T.B 0 2.38 2.61 0 3.23 3.24 0.94 0.79 856 9.74% 
 
 
 
 
 
 
 
 
 
 

Table 13: Classification to Fractal Dimension Zonal Statistics for 1989 
 

Zone 
Name Majority Mean Median Min. Max. Range Diversity 

Std. 
Dev Majority Majority 

         Count % 
Water 0 2.45 2.6 0 3.15 3.16 0.81 0.65 485 6.45% 

Woody 
wetland 0 2.5 2.64 0 3.38 3.39 1.05 0.62 5747 5.67% 
Forest 0 2.42 2.64 0 3.28 3.29 1.04 0.76 5882 8.89% 

C.R.C/T.B 0 2.44 2.62 0 3.19 3.2 0.85 0.68 622 6.95% 
 
 

 

 

 

 

 

 

 



CHAPTER 5:  CONCLUSION 
 

The three objectives for the study were all met successfully as I was able to 

• identify the impacts on land cover changes for the study area from 1987 to 1989. 

• identify the spatial patterns of the impacts. 

• identify the local fractal method as the most effective method used in the study. 

For the post-classification comparison, the hybrid method was chosen for analysis.  For 

the hybrid classification, the accuracy was found to be 81.44% and 85.71% for the 1987 and the 

1989 images.  In evaluating classification accuracy, the rule of a minimum 50 random points per 

feature class was followed with the exception of the water class.  Fewer points were used due to 

the small area of coverage for the water feature class in the 1987 image (Congalton 2001).  The 

results of land cover change due to the hurricane are summarized as follows (from Table 8) 

• a gain in water class of 4.03%  

• a gain of woody wetland areas of 5.09%  

• a loss of forest cover of 9.24% 

The forested area over the Wambaw swamp, Coffee creek swamp, and the Little Wambaw 

wilderness was converted into water and woody wetland classes.  Forest cover was gained near 

the edge of the Wambaw swamp.  Due to this, the woody wetland became more homogeneous 

around the three swamps.  The storm surge from the hurricane caused some of the low lying 

flooded areas to be classified as water and woody wetlands, and the areas above the banks of the 

low lying woody wetlands to be classified as forest. 

The PCA and TCT were used to validate the results of the classification procedure and to 

see if the hybrid algorithm missed any important changes, which occurred due to the hurricane.  

PC1 and PC2 bands had a very good correlation with the TCT brightness and greenness bands, 

with the visual appearance almost similar.  PC1 and the TCT brightness band emphasized the 
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changes in the water and woody wetland classes with an increase in spatial homogeneity of the 

three swamp areas clearly revealed.  Changes in the cultivated row crops/transitional barren areas 

were detected in both PC1 and TCT brightness, and it was clear that the cultivated row crops 

area coverage had increased in 1989.  Both PC1 and TCT brightness revealed the substantial 

change caused by the Hurricane in the Wambaw swamp sediments.  PC2 and the TCT greenness 

bands emphasized the changes in the forested areas and to a lesser extent for the woody wetland 

areas.  These bands clearly revealed the increase in spatial homogeneity of the forested areas.  

The TCT greenness band revealed the increase in homogeneity from 1987 to 1989 better than 

PC2 band.  PC3 faintly revealed the changes for the woody wetland areas and to a lesser extent 

for the cultivated row crops area from 1987 to 1989.  The TCT wetness band emphasized the 

homogeneity increase for the forested areas, and was the only band that revealed the spatial 

heterogeneity increase for the woody wetland and cultivated row crops classes. 

For the local fractal TPSA method the 17x17 moving window with an arithmetic step 

increase of 5 steps was found to be the best moving window size for this study with a good 

tradeoff between the edge effects and the identification of spatial patterns.  For the local fractal 

method the most dominant spatial patterns identified for the 1987 transformed image were the 

dark tones representing the cultivated row crops/transitional barren feature class.  For 1989, the 

local TPSA method identified spatial patterns which were again dark tones representing the 

water/woody wetland feature classes.  The dark tones represent high spatial homogeneity.  Both 

of the 1987 and 1989 local TPSA outputs identified the sediment loadings with their high 

heterogeneity in the Wambaw swamp with the brightest tones in the images.  The texture in the 

1987 image was found to have large variation in D values and an overall high spatial complexity.  

This was confirmed in the Zonal statistics correlation of classification vs fractal dimension 

values where the mean and median D values for the dominant woody wetland and the forest 

classes have both decreased for 1989 compared to the values in 1987. 
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 The local fractal TPSA method identified the cultivated row crops/transitional barren 

class as having the biggest drop in spatial complexity from 1987 to 1989 in the change detection 

image.  The post-classification comparison did not have a spatial complexity change result for 

the cultivated row crops areas.  A majority of the area covered by the Wambaw swamp, the 

Coffee creek swamp, and the Little Wambaw wilderness displayed low to moderate negative and 

uniform D difference values, which meant a gain in homogeneity, and a consequent reduction in 

the spatial complexity.  This was also confirmed by the PC1, PC2 and the TCT brightness and 

greenness bands.  The local fractal TPSA method identified the areas with the highest gain and 

the highest loss in spatial complexity in the change detection image. Highest gain in areas of 

spatial complexity were found to be situated near the intersections of the dirt roads or running 

parallel between the dirt roads, for example, the bright spots near the “Round pond trailhead” 

and “Bark Island”.  Highest loss in areas of spatial complexity was the cultivated row crops 

feature classes.  It was not possible to find out the areas with maximum spatial complexity 

change with the TCT wetness band. 

 The biggest advantage of the local TPSA fractal method is to identify the locations of 

largest spatial homogeneity and spatial heterogeneity changes in an automated manner. This will 

be very useful for forest service staff in directing their field work towards the areas with the 

highest gain and highest loss in spatial complexity, because we expect they would be the most 

“affected” areas. 
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APPENDIX A:  LOCAL FRACTAL OUTPUT FOR DIFFERENT MW SIZES 

 

Figure 35: TPSA for 1987 with 33x33 MW with 5 Geometric steps 

 
Figure 36: TPSA for 1989 with 33x33 MW with 5 Geometric steps 
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Figure 37: TPSA for 1987 with 9x9 MW with 5 Arithmetic steps 

 

 

 
Figure 38: TPSA for 1989 with 9x9 MW with 5 Arithmetic steps 
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Figure 39: TPSA for 1987 with 11x11 MW with 5 Arithmetic steps 

 

 

 
Figure 40: TPSA for 1989 with 11x11 MW with 5 Arithmetic steps 
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Figure 41: TPSA for 1987 with 15x15 MW with 5 Arithmetic steps 

 

 
Figure 42: TPSA for 1989 with 15x15 MW with 5 Arithmetic steps 

 104



 
Figure 43: TPSA for 1987 with 21x21 MW with 5 Arithmetic steps 

 

 

 
Figure 44: TPSA for 1989 with 21x21 MW with 5 Arithmetic steps 
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Figure 45: TPSA for 1987 with 25x25 MW with 5 Arithmetic steps 

 
Figure 46: TPSA for 1989 with 25x25 MW with 5 Arithmetic steps 
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Figure 47: Change detection TPSA with 33x33 MW with 5 Geometric steps 

 
Figure 48: Change detection TPSA with 9x9 MW with 5 Arithmetic steps 
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Figure 49: Change detection TPSA with 11x11 MW with 5 Arithmetic steps 

 
Figure 50: Change detection TPSA with 15x15 MW with 5 Arithmetic steps 
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Figure 51: Change detection TPSA with 21x21 MW with 5 Arithmetic steps 

 

Figure 52: Change detection TPSA with 25x25 MW with 5 Arithmetic steps 
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Table 14: Local fractal dimension D values for the 1987 and 1989 images 

Year 

Moving 
window 

size 
Step 
size 

Step 
increase 
method Min D Max D Mean D 

Std 
Dev 

        
1987 33x33 5 Geometric 1.95 3.25 2.79 0.12 
1987 9x9 5 Arithmetic 2.01 4.6 3.24 0.25 
1987 11x11 5 Arithmetic 1.97 3.81 2.92 0.18 
1987 15x15 5 Arithmetic 2.09 4.15 3.16 0.18 
1987 17x17 5 Arithmetic 2.1 3.45 2.82 0.14 
1987 21x21 5 Arithmetic 2.12 3.27 2.77 0.12 
1987 25x25 5 Arithmetic 2.25 3.35 2.9 0.12 

        
1989 33x33 5 Geometric 2.01 3.11 2.64 0.11 
1989 9x9 5 Arithmetic 1.88 4.57 3.07 0.26 
1989 11x11 5 Arithmetic 1.97 4.01 2.75 0.19 
1989 15x15 5 Arithmetic 2.18 4 2.99 0.18 
1989 17x17 5 Arithmetic 2.16 3.38 2.66 0.13 
1989 21x21 5 Arithmetic 2.18 3.13 2.61 0.11 
1989 25x25 5 Arithmetic 2.28 3.24 2.73 0.11 

        
1989 - 1987 33x33 5 Geometric -0.79 0.87 0.15 0.15 
1989 - 1987 9x9 5 Arithmetic -1.68 1.88 0.17 0.35 
1989 - 1987 11x11 5 Arithmetic -1.21 1.27 0.17 0.25 
1989 - 1987 15x15 5 Arithmetic -1.11 1.44 0.17 0.23 
1989 - 1987 17x17 5 Arithmetic -0.71 0.88 0.17 0.18 
1989 - 1987 21x21 5 Arithmetic -0.63 0.77 0.17 0.15 
1989 - 1987 25x25 5 Arithmetic -0.57 0.73 0.17 0.14 

 

Explanation for abnormal low and high D values in the table 

The erroneous low and high fractal dimension values i.e., below 2.0 and above 4.0 are 

caused due to outliers.
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APPENDIX B: TABLES USED FOR TASSELED CAP TRANSFORM 
 

 
 
 
(Source: Chander and Markham 2003)
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(Source: Chander and Markham 2003) 

 

(Source: Chander and Markham 2003) 
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(Source: Chander and Markham 2003) 
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APPENDIX C: TASSELED CAP TRANSFORM EQUATIONS 
 

Tasseled Cap transformation equations for Landsat 4 

 
Brightness = 0.3037 * TM1 + 0.2793 * TM2 + 0.4743 * TM3 +  

0.5585 * TM4 + 0.5082 * TM5 + 0.1863 * TM7 
 
Greenness = -0.2848 * TM1 - 0.2435 * TM2 - 0.5436 * TM3 +  

0.7243 * TM4 + 0.0840 * TM5 - 0.1800 * TM7 
 
Wetness = 0.1509 * TM1 + 0.1973 * TM2 + 0.3279 * TM3 +  

0.3406 * TM4 - 0.7112 * TM5 - 0.4572 * TM7 
 
 
Tasseled Cap transformation equations for Landsat 5 

 
Brightness = 0.2909 * TM1 + 0.2493 * TM2 + 0.4806 * TM3 +  

0.5568 * TM4 + 0.4438 * TM5 + 0.1706 * TM7 
 

Greenness = -0.2728 * TM1 - 0.2174 * TM2 - 0.5508 * TM3 +  
0.7221 * TM4 + 0.0733 * TM5 - 0.1648 * TM7 
 

Wetness = 0.1446 * TM1 + 0.1761 * TM2 + 0.3322 * TM3 +  
0.3396 * TM4 - 0.6210 * TM5 - 0.4186 * TM7 

 

(Source:  ERDAS Imagine 8.7 software, 2004) 
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