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ABSTRACT. Two forms of spatial interpolation, th~ interpolation of point and areal data, are
distinguished. Traditionally, point interpolation is applied to isarithmic, that is, contour mapping
and areal interpolation to isopleth mapping. Recently, areal interpolation techniques have been
used to obtain data for a set of administrative or political districts from another set of districts
whose boundaries do not coincide. For point interpolation, the numerous methods may further be
classified into exact and approximate. Exact methods include most distance-weighting methods,
Kriging, spline interpolation, interpolating polynomials, and finite-difTerence methods. Approx-
imate methods include power-series trend models, Fourier models, distance-weighted least-
squares, and least-squares fitting with splines. Areal interpolation methods, on the other hand,
are classified according to whether they preserve volume. Traditional areal interpolation methods
which utilize point interpolation procedures are not volume-preserving, whereas the map overlay
and pycnophylactic methods are. It is shown that methods possessing the volume-preserving
property generally outperform those that do not.
KEY WORDS: two-dimensional interpolation, contouring, Kriging, spline, trend surface, vol-
ume-preserving, map overlay, pycnophylactic, areal interpolation

The spatial interpolation problem can
be simply .stated as follows. Given a set
of spatial data either in the form of dis-
crete points or for subareas, find the
function that will best represent the
whole surface and that will predict val-
ues at other points or for other subareas.
This general problem has long been a
major concern in many disciplines. In
geography and cartography, the main
applications of different spatial interpo-
lation methods are in isoline mapping.
With the advance of computing technol-
ogy, and with increased use of mul-
tivariate analysis of data collected for
varying units, spatial interpolation
methods have been applied to other
problems in geographic research as well.
For example, the study of the effects of
socio-economic characteristics on voting
behavior requires the comparison of
ward data with census tract data, and
boundary segments of these two sets of
units rarely coincide. It would be useful
to examine the nature and character-

Nina Siu-Ngan Lam is assistant professor of ge-
ography at the Ohio State University, Columbus,
OH 43210. The author wishes to thank Dr. M. F.
Goodchild and the reviewers for their comments on
an earlier draft of this paper.

~ 1983 American Congress on Surveying and Mapping
0094-1689/83$2.50

The American Cartographer, Vol. 10, No.2, 1983, pp. 129-149

129

istics of various interpolation methods
so that appropriate selections can be
made for various applications.

In giving a systematic review of inter-
polation methods, a classification will be
used that divides them into point meth-
ods and areal methods. Point interpola-
tion deals with data collectable at a
point, such as temperature readings or
elevation, whereas areal interpolation
deals with data, such as population
counts by census tracts, that are ag-
gregated over a whole area. Maps of the
former type of data are often referred to
as isometric, maps of the latter as iso-
pleth (Hsu and Robinson 1970). Point or
isometric methods will be further sub-
divided into "exact" and "approximate"
methods according to whether they pre-
serve the original sample point values,
whereas areal or isopleth methods will
be subdivided according to whether they
preserve volume. The nature of each
class of interpolation methods and its
relative merits will be examined. Worked
examples of selected interpolation meth-
ods are also given in the appendix. Al-
though reviews of spatial interpolation
methods have appeared before, they are
either oriented toward disciplines other
than cartography (Crain 1970; Leberl
1975; Schumaker 1976; Schut 1976), or
they do not include discussion of areal
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interpolation (Rhind 1975). It is the in-
tent of this paper to bring together se-
lected methods that are useful in mapping
and map-related problems.

POINT INTERPOLATION
Numerous algorithms for point inter-

polation have been developed in the
past. But none of them is superior to all
others for all applications, and the selec-
tion of an appropriate interpolation
model depends largely on the type of
data, the degree of accuracy desired, and
the amount of computational effort af-
forded. Even with computers available,
some methods are too time-consuming
and expensive to be justified for certain
applications. In all cases, the fundamen-
tal problem underlying all these interpo-
lation models is that each is a sort of
hypothesis about the surface, and that
hypothesis mayor may not be true.

These point interpolation methods
may be classified in any of a number of
ways. For example, some classify the
methods according to the spatial extent
of data points involved, that is, as either
global methods, in which all sample
points are utilized in determining value
at a new point, or piecewise methods, in
which only nearby points are used. Some
classify Kriging as a statistical tech-
nique and identify the remainder as an-
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Figure 1. Types of spatial interpolation methods.
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alytical methods (Delfiner 1976). In the
present paper, the numerous point in-
terpolation methods are classified as
either exact or approximate methods be-
cause the characteristic of preserving or
not preserving the original sample point
values on the inferred surface seems
fundamental in analyzing accuracy and
in examining the nature of interpolation
methods (Wren 1975). The methods of
the "exact" type include interpolating
polynomials, most distance-weighting
methods, Kriging, spline interpolation,
and finite difference methods. The group
of "approximate" methods includes
power-series trend models, Fourier mod-
els, distance-weighted least-squares, and
least-squares fitting with splines (Fig-
ure 1).

It should be mentioned briefly that
two different approaches may be used for
contour mapping, a main application of
spatial interpolation methods. Given a
set of irregularly-spaced data points, the
first approach to contouring first forms a
set of triangles from the data points. The
contours are then drawn through the
triangles using different interpolation
methods (Gold and others 1977). The
second approach requires interpolation
of the data points to a mesh of grids and
then traces the contours through the
mesh of interpolated values (Walters



1969). In this approach, it is very un-
likely that the contoured surface would
pass through the data points even if an
exact interpolation method were used,
unless the data points coincide with the
grids. Yet in the first approach the con-
toured surface constructed by an exact
method will pass through each data
point since the irregular triangular
grids are the data points (McCullagh
and Ross 1980).

Exact Methods
Given the set of N data points, one of

the simplest mathematical expressions
for a continuous surface that intersects
these points is the interpolating poly-
nomial of the lowest order that passes
through all data points. One common
form of this polynomial is

N

f(x,y) = L aljx.yJ. (1)
I. 1-0

The principle of distance-weighting
methods is to assign more weight to
nearby points than to distant points. The
usual expression is

f(x,y) = [ i W(duz.]/[ i W(dJ], (3)
I-I \ I-I

where w(d) is the weighting function, Zi
is the data value at point i, and di is the
distance from point i to (x,y).

Although weighting methods are often
used as exact methods (Sampson 1978),
they can also be approximate depending
on the weighting functions. For those
weighting functions where w(O) = 00,
such as w = d-l, the weighting method
will give the exact value of the original
sample points. On the other hand, for a
negative exponential weighting func-
tion, the method will only approximate
the original values at the locations of the
sample points. Lancaster and Salkaus-
kas (1975) discuss the relative merits of
various weighting functions. An exam-
ple of this method using w = d-l is
shown in the appendix.

There are several disadvantages to
weighting methods. First, the choice of a
weighting function may introduce am-
biguity, especially when the characteris-
tics of the underlying surface are not
known. Second, the weighting methods
are easily affected by uneven distribu-
tions of data points since an equal
weight will be assigned to each of the
points even if it is in a cluster. This prob-
lem has long been recognized (Delfiner
and Delhomme 1975), and has been
handled either by averaging the points
or selecting a single point to represent
the cluster (Sampson 1978). How far
apart points should be from each other
before one can consider some of them re-
dundant remains another question.
Morrison (1974) even suggested that in-
terpolation should not be carried out un-
less the data point distribution has a
nearest neighbor statistic of more than
1.0, to indicate randomness. Such a rule
is rather too simple as well as controver-
sial since the nearest neighbor statistic
itself is subject to a number of problems,
not the least of which is that some very

The coefficients au are determined by
solving the set of equations

f(XhY.) = Zh i = I, , N. (2)

The major deficiency of this exact poly-
nomial fit is that since the polynomial is
entirely unconstrained, except at the
data points, the values attained between
the points may be highly unreasonable
and may be drastically different from
those at nearby data points. This prob-
lem may be alleviated to a certain extent
by employing lower order piecewise
polynomial surfaces to cover the area
(Crain and Bhattacharyya 1967). How-
ever, piecewise surface fitting might
cause such problems as discontinuities
at the edges where a certain amount of
overlap is necessary, high computation
time, and the need to adjust for varia-
tions in data density. Other problems in-
clude the existence of other solutions for
the same set of data (Schumaker 1976)
and the inaccuracy of the inverses of
large matrices of equation (2) for poly-
nomials of orders greater than 5 (Ralston
1965). As a result, this exact polynomial
interpolation method is not generally
recommended, and particularly so when
the number of data points is large.

]
~d)
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non-random patterns also yield a value
of 1.0.

Finally, the interpolated values of any
point within the data set are bounded by
min(,z,) ~ f(x,y) ~ max(,z,) as long as w(dJ
> 0 (Crain and Bhattacharyya 1967).
In other words, whatever weighting
function is used, the weighted average
methods are essentially smoothing pro-
cedures. This is considered to be an im-
portant shortcoming because, in order to
be useful, an interpolated surface, such
as a contour map, should predict accu-
rately certain important features of the
original surface, such as the locations
and magnitudes of maxima and minima-
even when they are not included as orig-
inal sample points.

However, the simplicity of the princi-
ple, the speed in calculation, the ease of
programming, and reasonable results
for many types of data have led to a wide
application of the weighting methods as
well as improvements of various types.
A combination of a weighting method
with other procedures also has been
used, most notably in SYMAP interpola-
tion (Shepard 1970).

Kriging is perhaps the most distinc-
tive of interpolation methods. The term
is derived from the name ofD. G. Krige,
who introduced the use of moving aver-
ages to avoid systematic overestimation
of reserves in the field of mining (Krige
1976). Matheron (1971) has generalized
the theory to the case of nonstationary
data, and the resulting method was later
termed Universal Kriging. It has be-
come a major tool in the field of geosta-
tistics in the last two decades (Guarascio
and others 1976; Mousset-Jones 1980).
Recent applications of Kriging to other
fields are increasing (McCullagh 1975).

Kriging regards the statistical surface
to be interpolated as a regionalized vari-
able that has a certain degree of con-
tinuity. In some cases, a regionalized
variable may have a minimal degree of
continuity in that no matter how short
the distance between two samples, their
values are simply independent of each
other. Such variables will have a "nug-
get" effect on the estimation procedures
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(Figure 2b). Regionalized variables may
also have a certain degree of anisotropy,
whereby the zone of influence of a sam-
ple does not have the same extent in all
directions. Yet there must be a structure
or spatial autocorrelation, that is, a de-
pendence between sample data values,
which decreases with their distance
apart. These characteristics of regional-
ized variables are quantified by the sam-
ple variances and covariances, that is,
the autocovariance matrix, from which
the Kriging estimates of unknown points
are determined (Rendu 1970).

Because different assumptions about
the regionalized variables may be in-
volved, two systems of Kriging proce-
dures, simple Kriging and Universal
Kriging, can be distinguished. Within
the system of simple Kriging, two differ-
ent assumptions may further be dis-
tinguished and these relate to two
approaches for estimating the autoco-
variance matrix. In the first approach,
the covariogram function, expressing
the relation between the covariance of
the sample points and their distance, is
used. It is expected that the covariogram
is a decreasing function of distance (Fig-
ure 2a); however, in actual applications
the covariograms will diverge from this
theoretical behavior. This approach to
simple Kriging is based on the stationar-
ity assumption, which holds that all the
sample points are taken randomly and
independently from one simple probabil-
ity distribution. This assumption, in
turn, implies that the probability den-
sity function and the autocovariance
matrix can be estimated.

However, natural phenomena with
this stationarity characteristic seldom
exist. Hence, interpolation may be based
upon the second but less restrictive as-
sumption, the intrinsic or quasi-station-
arity assumption, in which only the in-
crements of the function but not the
function itself are required to be sta-
tionary (David 1977; Goodchild 1979).
Instead of the covariogram, the vario-
gram, which represents the relationship
between the mean-square difference
between sample values and their inter-
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sirable. Universal Kriging assumes that
the increments of the regionalized vari-
able have some properties of stationarity
only within a neighborhood and that the
trend or drift for a neighborhood can be
described by a polynomial function. The
residuals from the drift are now as-
sumed to have a constant variogram
within a neighborhood.

Once the coefficients of the autoco-
variance matrix for a given set of sam-
ples are determined, the estimates for
unknown points can be calculated by a
linear combination of the weighted sam-
ple values
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Figure 2. Examples of covariogram and vari-
ogram.

vening distance, is now used. Math-
ematically, the variogram (2r) or semi-
variogram (r) is defined by

N

r: ~N I [Z(XI + d) -Z(Xt>]2. (4)
I-I

where d is the distance between two
samples. This function is expected to in-
crease with the distance between sam-
ples, taking a value close to zero for
small distances, and becoming a con-
stant for distances larger than the zone
of influence, or range (Figure 2b). Simi-
larly to the covariogram, theexperimen-
tal variogram will often deviate signifi-
cantly from this theoretical model. Once
the variogram or covariogram has been
estimated from the samples, it is possi-
ble to calculate the elements of the au-
tocovariance matrix.

Because these assumptions of simple
Kriging imply a certain amount of
stationarity over space, and because re-
gionalized variables are often nonsta-
tionary, an alternative hypothesis is de-

..
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where ~ are weights to be determined
under the following two conditions:

E(Z* -Z) = 0 (6)

var(Z* -Z) = min. (7)

The first is a universality condition
which states that Z must be an unbiased
estimate. The second condition, the op-
timality condition, implies that AI should
have values such that the estimation
variance of the difference (Z* -Z) be
minimum (Matheron 1963). The Kriging
estimate thus obtained is the best linear
unbiased estimate (BLUE). The corre-
sponding estimation variance provided
for an unknown point is the Kriging
error. For points that belong to the set of
samples, Kriging returns the original
data values, and so constitutes an exact
interpolation procedure.

Calculation of Kriging estimates
under the two systems, simple and uni- ,versal, can be found in a number of '

sources (David 1976 and 1977; Good-
child 1979). An example of calculating
simple Kriging estimates is given in the
appendix. Generally, simple Kriging has
more restrictive assumptions but fewer
computational problems, whereas the
assumptions of Universal Kriging are
more general but difficulty of calcula-
tion is greater. Universal Kriging uses a
different set of equations for each point
estimate in different neighborhoods. The
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variogram represents the residuals in-
stead of the observed values, which
would requ~re that local drifts be known
first. Since true drifts are not known,
they must be estimated from the avail-
able sample values; the variogram cal-
culated from them is also an estimate of
the true variogram (Olea 1974).

How closely the variogram of the es-
timated residuals corresponds to the
true but unknown variogram depends
upon the appropriateness of the function
selected to represent the drift, the func-
tion selected to represent the variogram,
and the size of the chosen neighborhood.
These thr! problems are closely re-

lated, and one can be determined inde-

pendently f the others. The usual pro-
cedure is fir t to assume a simple form of
the variogram of residuals and then to
select a neighborhood size. Next the
drifts withip the neighborhoods are es-
timated a~d the experimental vario-
gram of re iduals calculated. The two
variograms are then compared (Huij-
bregts and Matheron 1971), The result
of a search[ r the drift and variogram is

not unique there are always several

combinatio s of drift and variogram
that may b equally satisfactory.

Among ther problems associated
with Universal Kriging is the selection
of an appropriate size of neighborhood. If
the neighborhood is large, a regular and
slowly varying drift is obtained, but also
a more complicated underlying vario-
gram, and ice versa. Choice of neigh-
borhood wi I also affect the continuity
properties f the estimates, which may
lead to ser'ous bias in interpretation.
If the cha ge of data points from one
neighborho d to the next is too abrupt,
there ma be discontinuities even
though the actual phenomenon is con-
tinuous (D lfiner 1976). A closely re-
lated probl m is the determination of
drift and ariogram under different
scales. An rea of higher elevation on a
topographi al surface can be regarded as
a "mountai ", and hence a drift at one
scale, or it may enter the random part
(variogram at another scale (Matheron
1971). The e are other criticisms: the
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method is not reliable unless a very
large number of sample values are
available (Rendu 1970); the improved
accuracy provided by Kriging will not
always justify the computational effort
required (Matheron 1963; Olea 1974);
and the difference in accuracy between
local cubic polynomial interpolation and
Kriging is marginal (Kubik and Botman
1976).

Nevertheless, the attractions of Krig-
ing are several. First of all, from a
theoretical point of view, Kriging uti-
lizes the theory of regionalized variables
which allows the drawing of statistical
inference. The model itself represents an
improvement over other interpolation
techniques, especially polynomial inter-
polation, since the degree of interde-
pendence of the sample points has
been taken into account. The Kriging
estimate is based on the structural
characteristics of the samples which are
summarized in the covariogram or vario-
gram function and thus result in an opti-
mal unbiased estimate. Kriging also
provides an estimate of the error and
confidence interval for each of the un-
known points, an asset not provided by
other interpolation procedures. This
error information reflects the density
and distribution of control points and
the degree of spatial autocorrelation
within the surface, and therefore is very
useful in analyzing the reliability of
each feature in the Kriged map. The
error map can also be used to determine
where more information is needed so
that future sampling can be planned.

Spline functions are widely discussed
topics in mathematics, but applications
in geography and cartography are rela-
tively few. They have only recently been
applied to isopleth mapping (Tobler and
Lau 1978 and 1979).

First consider the two-dimensional
case. Given a set of n points along a pro-
filexo < XI < < Xn, a spline function
s(x) of degree m with the knots Xu.
XII' ...I Xn is a function defined on the
entire line such that in each interval
(Xj,Xj+J for i = 0, .., n, s(x) is given by
some polynomial of degree m or less, and



t.._""""~~';';"'~-"",""":;;;,~.~,."~:,;.".,,,,,...,,=..

iimensional
along a pro-

line function
Ie knots xo.
,fined on the
ach interval
-) is given by
n. or less, and

thatl 8(;1:) and its derivatives of order 1, only function values at isolated points
2, , m -1 are continuous every- but also at points along grid lines. If
where (Giloi 1978). For m = 1, 2, or 3 data are dense along lines, there may be
a spline is called linear, quadratic, or a real advantage in using this method
cubic, respectively. Thus, a quadratic (Gordon 1969 and 1971). In addition, the
spline must have one continuous deriva- B splines, which search for the least
tive at each knot, the cubic two. The number of non-zero subintervals-for a
cubic splines are the most widely used linear spline the number is two-also
and they are called bicubic splines in the have been suggested for handling large
three-dimensional case. In some cases, numbers of data points since computa-
the knots need not be the data points at tions are more reliable and efficient
which the values are given, and the (Ahlberg 1970; De Boor 1976).
splines in these cases are only an ap- The use of spline functions in spatial
proximation of the data. However, the interpolation offers several advantages.
case of coincident knots and data points They are piecewise, and hence involve
seems to be the most widely used, and relatively few points at a time and
most spline interpolations are exact. should be closely related to the value

EDCtending splines to the three-dimen- being interpolated; they are analytic;
sional case is not easy since a three- and they are flexible. Splines of low de-
dimensional spline is not a simple cross gree, such as the bicubic splines, are al-
product of univariate splines. Further- ways sufficient to interpolate the surface
moI;e, there is an ambiguity in dividing quite accurately. Bhattacharyya and
the surface into patches such that the Holroyd (1971) illustrated that when
splipe functions can be applied. Hessing compared with other interpolation
and his co-workers (1972) first extended methods, specifically the inverse square
bicubic spline interpolation to irregu- distance-weighting method and the
lar1y spaced data by drawing lines Gram-Schmidt orthogonalization proce-
through the data points to form quad- dure, spline interpolation is highly accu-
rangles. Extra points were needed at rate since all important small-scale fea-
some intersections of these lines in order tures are retained. However, there are
to complete the quadrangles, and the difficulties associated with this tech-
values for these extra points had to be nique. In addition to the problem of de-
det~rmined before beginning the inter- fining patches over a surface, all of the
polation. An example of bicubic spline spline interpolation and blending meth-
interpolation using the algorithm in ods introduce anomalies that are not in
Spath (1974) is given in the appendix. the original surface (Lancaster and Sal-

Another approach is to divide the sur- kauskas 1975).
fac~ into triangles by connecting the The principle behind finite difference
data points at vertices of these triangles. methods is the assumption that the de-
The fact that there are many ways of sired surface obeys some differential
making the triangulation of the same equations, both ordinary and partial.
set of data points complicates the inter- These equations are then approximated
pol~tion problem. However, selection of by finite differences and solved itera-
triangles has long been a concern in dig- tively. For example, the problem may be
ita,l terrain modeling (Peucker and to find a function z such that
otHers 1976) and algorithms for dividing
the surface into acceptable or optimal !!:!:- + !!:!:- = 0 (8)
triJingles according to some criteria have Bx' By'
been designed (Cavendish 1974).

One generalization of spline functions inside the region, and Z(x/,Y/) = 0 on the
has led to the use of spline blending. boundary. This is the LaPlace equation;
This method is useful for the construc- and a finite difference approximation of
tion of a surface which interpolates not this equation is
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Zij = (Zi lJ + Zi+lj + Zij-l + Zij+V/4. (9)

where Zu is the value in cell ij. This
equation in effect requires that the
value at a po nt is the average of its four
neighbors, r ulting in a smooth surface.
For a smoot er surface, other differen-
tial equatio may be used. Also, the
"boundary c nditions" may be applied
not only to t e boundary but also within
the region f interest {Briggs 1974;
Swain 1976 .This point interpolation
technique h .a striking similarity with
the pycnoph lactic areal interpolation
method, whi h will be discussed later.

The princi Ie involved in these finite
difference m thods is generally simple
though the olution of the set of differ-
ence equatio s is time-consuming. Yet,
the surface enerated from these equa-
tions has no bsolute or relative maxima
or minima xcept at data points or on
the bounda .In addition, interpolation
beyond the neighborhood of the data
points is poo ,and unnatural contouring
can occur fo certain types of data, such
as broad fla areas (Crain 1970). More-
over, in so e cases there might be no
value assign d to certain points.

Approximat on Methods

The meth ds to be discussed in this
section are c ncerned with determining
a function, ,y), which assumes values
at the data pints approximately but not
generally eq al to the observed values.
Thus, there ill be an "error" or residual
at every da point. In order to obtain a
good approx mation, the errors must be
kept withi certain bounds by some
error criter.on. Two commonly used
criteria are the minimax, which mini-
mizes the m ximum value of e over all i
and the leas -squares, which minimizes
the sum of s uares of residuals

N N

2. ef = 2. (f(x"yJ -ZI)2 = min. (10)
1-1 I-I

Since the de rmination of f(x,y) accord-
ing to the inimax criterion is rather
complicated ven in two dimensions, the
least-square criterion is frequently used
(Crain and hattacharyya 1967).

Ordinary least-squares polynomials
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are of the same general form as equation
(1), but in this case the number of terms
in the polynomial, m, is less than the
total number of data points, N, with the
addition of an error term:

m

«X,y) = L alJxly' + e. (11)
101-0

These methods are also called trend-
surface mod~ls since they are often used
to simplify the surface into a major trend
and associated residuals. Since interpo-
lation means prediction of function val-
ues at unknown points, and trend in this
case is regarded as a simplified function
able to describe the general behavior of
the surface, predictions of values thus
follow the trend (Torelli 1975). An ex-
ample of fitting a first-degree trend is
given in the appendix.

Although often criticized (Norcliffe
1969; Unwin 1975), applications of this
trend model to both physical and socio-
economic phenomena has been very
extensive (Chorley and Haggett 1965;
Wren 1973). Problems associated with
these trend models for interpolation are
apparent. In the first place, the trend
model assumes a distinction between a
deterministic trend and a stochastic
random surface (noise) for each phenom-
enon, which may be arbitrary in most
cases. Such distinction requires a seri-
ous theoretical background which is
often missing in geography. Actually, in
most of the geosciences, the so-called
trend may present the same stochastic
character as the noise itself. Hence, a dis-
tinction between them is only a matter
of scale, which is similar to the problem
of distinguishing drift and variogram in
Universal Kriging.

Miesch and Connor (1968) have com-
pared fitted surfaces constructed from
polynomial terms and arbitrary terms,
with approximately the same number of
terms being used in each case. Although
both fitted surfaces could explain rough-
ly the same proportion of total variance,
they led to markedly different patterns
of residuals. Since both models have
approximately the same proportion of
variance explained, the choice between
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them I therefore depends largely on the and N are the fundamental wavelengths
a pridri knowledge of surface form. in the x and y directions. The Fourier

Th estimation of values using trend series F( al»pi,q) is usually defined as
mode s is highly affected by the extreme
value and uneven distribution of data F(atJ,Pt,Qj) = ccucos(pJCOS(Qj) + csucos(pt)sin(Qj)
poin (Krumbein 1959). The problem is + scuain(pJcos(Qj) + ssljSin(pJsin(Qj). (13)

furth r complicated by the fact that
some ~f the da~a points are actually CCu, CSu, SCu, SSu are the four Fourier
more InformatIve than others. For coefficients for each a (Bassett 1972).
ex~m Ie, in topographic maps, the d.ata With this equation a s~rface can be de-
pom~s taken from the peaks, PIts, composed into periodic surfaces with dif-
passe~, and pales ('Ya~tz 1966; Peucker ferent wavelengths. The Fourier models
1972 are more sIgnificant than t?e have been mainly use'cl in describing and
porn taken from the slope or plaIn. comparing physical surfaces (Harbaugh
Henc , the answer to how many data and Preston 1968' Harbaugh and others
poin are required for a reliable result 1977). It has bee~ suggested by Curry
is no known. (1966) and Casetti (1966) that the model

.Co pared with Kriging, the va.rian~e is particularly useful for studying the
gIve by least-squares polynomIals IS effects of areal aggregation on surface
the v iance between the actual an~ the variability. It is possible to combine
esti ated values at sample poInts, trend and Fourier models so that a poly-
whic is generally less than the vari- nomial of low order is used to extract
ance t points not belonging to the set of any large-scale trend; the residuals from
sam Ie points (Matheron 1967). The this surface are analyzed by Fourier
mea -square error from the polynomial models (Bassett 1972).
fit is not related to the estimation error Distance-weighted least-squares may
as il ustrated clearly by Delfiner and be used to take into account the distance-
Delh mme (1975). The experiment in decay effect (McLain 1974; Lancaster
Lam (1981) further indicates that poly- and Salkauskas 1975). In this approach,
nomi 1 trend surfaces having the same the influence of a data point on the co-
amo nt of variance explained, repre- efficient values is made to depend on its
sen d by r2, may have a drastic differ- distance from the interpolated point.
ence in the mean error between the es- The error to be minimized becomes
tima ed and the actual values for all
poin .N N

A other interesting problem neglect- L e~ = L w(dl)(f(x"yJ-Zt)', (14)
ed i most of the literature about trend I-I I-I

mod Is relates to the accuracy across where w is a weighting function. Its
the ap. Zurflueh (1967) showed that choice again has a serious effect on the
a po ynomial surface fit becomes un- interpolation results. Computation time
relia Ie at the edge of the map,. caus- is increased by the calculation of the
ing evere problems wh.en two adja.cent weighting function. .
area have to be fitted wIth polynomIals. Another variation of least-squares IS

If here is some definite reason for as- least-squares fitting with splines. Al-
sum ng that the surface takes so~e re- though a number of authors have sug-
curr t,1g or cyclica.l form, then ~ tngo~o- gested that this method will yield ad-
met IC polynomIal, or Fo~r£er ser£es equate solutions for most problems
mod l, may be most applIcable. The (Hayes and Halliday 1974; Schumaker
Fou ier model basically takes the form 1976; McLain 1980), it involves a number

M " of technical difficulties such as the
z = al., + L L F(aIJop"Qj) + e, (12) problem of rank-deficiency in matrix

I-I. I-I manipulations, the choice of knots for
spline approximation, and problemswhe~e PI = 21TixlM and qJ = 21TjyIN. M
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associated with an uneven distribution
of data points.

AREAL INTERPOLATION
The areal interpolation problem is

more common to geography than to
other fields. The literature concerning
this type of interpolation, however, is
very scanty. Applications of areal in-
terpolation procedures in the past, as
mentioned above, have mainly been in
isopleth mapping, which seems to be
regarded as a fundamental problem in
this field (Mackay 1951 and 1953). An
extended application of areal interpola-
tion methods is the transformation of
data from one set of boundaries to an-
other. As indicated before, this type of
application has increased rapidly in
importance and has become a major
focus in the study of the areal interpola-
tion problem. It is in this sense that the
term "areal interpolation" is used in the
remainder of this paper. Although the
nature of the data is different, the study
of the areal interpolation problem is
closely related to point interpolation
since the traditional approach to areal
interpolation requires the use of point
interpolation procedures. Therefore,
the problems associated with point in-
terpolation models should be understood
first before examining the underlying
structure of areal interpolation.

For convenience, following Ford (1976),
the geographic areas for which data
are available will be called source zones
and those for which data are needed
will be called target zones. Two ap-
proaches, volume-preserving and non-
volume-preserving, can be used to
deal with the areal interpolation prob-
lem (Figure 1).

Non-Volume-preserving Methods

This approach generally proceeds by
overlaying a grid on the map and assign-
ing a control point to represent each
source zone. Point interpolation schemes
are then applied to interpolate the val-
ues at each grid node. Finally, the esti-
mates of the grid points are averaged to-
gether within each target zone, yielding
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the final target-zone estimate. In this
approach, the major variations between
the numerous methods are the different
point interpolation models used in as-
signing values to grid points. It is there-
fore also termed the "point-based areal
interpolation approach". The specific
point interpolation methods are identi-
cal to those already discussed.

There is evidence that this approach is
a poor practice (Porter 1958; Morrison
1971). First of all, the choice of a control
point to represent the zone may involve
errors. If the distribution of the phe-
nomenon is symmetrical and relatively
uniform, the center-of-area would be
a convenient control point, and the es-
timated value for each grid would be
reliable. Unfortunately in reality, zones
such as census tracts and counties for
which the data are aggregated are sel-
dom symmetrical, and the patterns of
distributions of most socio-economic
phenomena are uneven. Secondly, am-
biguity occurs in assigning values at the
grid points in some conditions, particu-
larly when opposite pairs of unconnected
centers have similar values which con-
trast with other opposite pairs-a classic
problem of locating isopleths mentioned
by many authors (Mackay 1951 and
1953).

Thirdly, this approach utilizes point
interpolation methods and hence cannot
avoid the fundamental problems associ-
ated with them. As mentioned above,
the most important problem underlying
the interpolation process is that an a
priori assumption about the surface is
involved. Very often, this assumption is
rather arbitrary and most geographical
phenomena are, in fact, very complex in
nature and it is difficult to reduce the
data in such a fashion that it can be
analyzed simply. Ironically, the abun-
dant use of interpolation procedures
found in the field of cartography is as-
sociated with scanty research on the re-
liability of the specific interpolation
method used (Hsu and Robinson 1970;
Jenks and Caspall 1969; Jenks and
others 1969; Morrison 1971; Stearns
1968).
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Still other factors including, for ex-
ample, the spatial arrangement and the
density of data points suggested by a
number of authors (Hsu and Robinson
1970; Morrison 1971) may seriously af-
fect the validity of the interpolation re-
sult. In applying point interpolation
methods to areal data, the problem is
further complicated by the fact that the
accuracy of the result is subject to
sources of error implicit in the original
aggregation procedure. The size and
shape of the source and target zones
(Coulson 1978) and the distribution of
the values of the variable for interpola-
tion (Ford 1976) are major factors affect-
ing the validity of the results.

The most important problem of this
approach, however, is that it does not
conserve the total value within each
zone. This problem has long been ne-
glected in most of the pertinent liter-
ature, although sometimes it is indi-
rectly implied (Schmid and MacCannel1

1955). Tobler (1979) addressed this
property explicitly and applied it to
both point and areal interpolation prob-
lems. The idea of volume-preserving can
be simply expressed as follows. First
consider the two-dimensional case, as
shown in Figure 3. A smooth curve can
always be constructed so that the area
under the curve in each category is re-
tained. The same general procedure is
necessary in the three-dimensional case;
the interpolated surface is required to be
smooth while preserving volume in each

+1~

I

~
0 -x

Figure 3. Volume-preserving property in
the two-dimensional case.
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source zone. Because of the volume-pre-
serving property, the isoline map drawn
from the interpolated values can be con-
verted into a bivariate histogram simply
by computing the volume under the iso-
line surface, and so the original value of
each source zone can be constructed.
This is what Tobler called an inversion
property, and is closely related to the
volume-preserving property. Volume-
preserving is a very useful property be-
cause it gives greater fidelity to the ap-
proximation of grid values in each
source zone so that subsequent estima-
tion of a value for each target zone is less
subject to error.

Volume-preserving Methods
The second approach to areal inter-

polation, called the "area-based areal
interpolation approach" in this paper,
preserves volume as an essential re-
quirement for accurate interpolation.
Furthermore, the zone itself is now used
as the unit of operation instead of the
arbitrarily assigned control point. Hence,
no point interpolation process is re-
quired. So far, two different methods
utilizing this approach can be distin-
guished.

The overlay method of areal interpola-
tion superimposes the target zones on
the source zones. The values of the
target zones are then estimated from
weights which are determined from the
size of the overlapping areas. Similar
procedures have been described in a
number of disciplines in a w~dely scat-
tered literature (Markoff and Shapiro
1973; Crackel 1975). Recently, the over-
lay method itself has become a major
function of many geographic informa-
tion systems.

Areal interpolation using map overlay
is intuitively simple. Once the overlay
product of the source zones and the
target zones is obtained, the area of each
individual polygon can be measured.
One can construct a matrix A consisting
of the area of each of the m target zones
(rows) in common with each of the n
source zones (columns), with elements
denoted by a,.. Also, let the column vec-



tors U (of length n), V (of length m) rep- exact estimates. Yet if the value of each
resent the source zone values and the source zone is unevenly distributed with-
target zone estimates (notation follows in its domain, estimation of target zone
Goodchild and Lam 1980). The next step values from the amount of overl~pping
of the estimation procedure will differ areas may not be reliable. In this latter
slightly depending on the type of the case, the reliability of target zone esti-
aggregate data describing the source mates will be governed mainly by the
zones. First of all, for data in the form of nature and degree of the inhomogeneity
absolute figures or counts, such as total of the source zone description and by the
population and income, an estimate of size of the target zone in relation to the
target zone t is obtained by: corresponding source zone. Ford (1976),

in his study of a contour reaggregationVI = f U.a.Ju.. (15) problem using point-based areal inter-

polation methods, concluded that several
where 0". denotes the area of source zone condit~ons should be considered in order
s. In matrix representation, V = WU, t~ ~chieve a;ceptable resu.lts. These con-
where W is a weight matrix containing d!tIons are !ndeed exten~Ions of the no-
elements of at"/u.. A small example of tion °fspatiai ~omogeneity. .
using the overlay method is given in the Un ortuna e.y, ~ou~ce zones havIng
appendix. ?omogeneous dlstnbutions seldom oc:ur

Secondly, density data, such as popula- m. the re.al world. Non-homogeneIty
tion densities, are converted first to ab- arIses t;naInly from the fact th~t ~ost
solute figures b multipl ing b 0". The thematIc m~ps a;e onl-:t ge?eralIzations1 . h Y d by k Y

d ...of very detaIled InVestIgatIons made on resu tIS t en converte ac to ensities .
d o . d 1 1 Th . f thb d.. d. b h r In IVI ua samp es. e SIze 0 e sam-

y IVI Ing Y t e target zone area t:
1 d th th d f 1. bP es an e me 0 0 samp Ing ecome

VI = (LU. u. au/u.)/rl = L U. au/f,- (16) important in determini~g the quality and
s s accuracy of the thematIc map. Very often

the source zones were originally del in-
Finally, for data which are in the form eated for other p~rposes an.d may ~ot
of ratios or proportions, such as percent represent the most Important In.r°rmation
of males in the population, additional in- for the target zones. M?reo,:er, !mp~rfect
terpolation procedures have to be in- knowledge of the spatIal dIst.nbutIon of
cluded. Since ratios simply compare two the phen~men?n and the asSIgnment of
absolute figures or two densities, it is ~alues ?r IdentIfiers f:o .zones t;nay produce
necessary to perform separate areal in- Impr~clse zone defi?ltIons. ~Inally, other
terpolation procedures for both the nu- technIcal pr?blems Involved In the pr?Cess
merator U and the denominator U of transferrIng the map from graphIC to
where U ::1 U IU ..2, digital format, such as digitization errors..1 .2. and generalization errors, should not be

(~ )/ (~ ) neglected.VI = -;- Us/au/us L; Uafa,Ju. .(17) The pycnophylactic interpolation meth-

.od was originally suggested by Tobler
If the data for the denominator or the (1979) for isopleth mapping. The method
numerator are densities, then the pro- assumes the existence of a smooth den-
cedures will be similar to those dis- sity function which takes into account
cussed earlier but will use equation (16) the effect of adjacent source zones. The
instead. density function to be found must have

The major problem with this method is the pycnophylactic, or volume-preserv-
that it assumes homogeneity within each ing, property, which can be defined in
source zone (McAlpine and Cook 1971)0 the following discrete way. Let Pk be
In other words, if the value of each source the population of zone k, Ak the area
zone is the same everywhere, subsequent of zone k, Z;j the density in cell ij,
reaggregation into target zones will yield and a. the area of a cell. Set qt equal to 1
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not require homogeneity within zones,
rapid variations of values within zones
seem to influence the quality of the es-
timates.

Comparisons between the point-based
and the area-based approaches have
been made by using a real example (Lam
1980). In general, judging from the
theoretical and the limited empirical
bases, the latter is far more desirable
than the former because of the volume-
preserving property of the latter. Within
the group of area-based methods, the
overlay method does not consider the
smoothness of the changes of values be-
tween zones while assuming homogene-
ity within, whereas the pycnophylactic
method imposes smoothness on the in-
terpolated grid values without requiring
within-zone homogeneity. These two
methods can be linked together as the
two ends of a continuum between a dis-
continuous and a maximally smooth
density surface. There should be some
real-world cases where reliable inter-
polation occurs somewhere along the
continuum, such as by imposing only a
certain degree of smoothness of the den-
sity surface but not as much as the pyc-
nophylactic method does, or by including
some side conditions. In choosing be-
tween these two methods, one must con-
sider the underlying structure of the
surface as well as the methods by which
the zones are delineated.

CONCLUSIONS
The problem of spatial interpolation

has long been recognized by a variety of
disciplines. Although the interpolation
of point data has been studied exten-
sively, areal interpolation has seldom
been examined. The review of point in-
terpolation has shown that various
methods have individual advantages
and disadvantages, and the choice of an
interpolation model depends largely on
the type of data, the degree of accuracy
desired, and the amount of computa-
tional effort afforded. In general, exact
or piecewise methods are more reliable
than approximate or global methods be-
cause of the former's simplicity, flexibil-
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ity, and reliability. The former are rep-
resented by most weighting methods,
Kriging, and spline interpolation, and
the latter are represented by trend-
surface models. In all cases, point inter-
polation models are seriously affected by
the quality of the original data, espe-
cially the density and the spatial ar-
rangement of data points, and the com-
plexity of the surface.

Areal interpolation is subject to other
sources of error because of areal aggre-
gation. The quality of the areal interpo-
lation estimates depends largely on how
the source and target zones are defined,
the method of data collection, the degree
of generalization or method of aggrega-
tion, and the characteristics of the par-
titioned surface. It is shown from both
theoretical and limited empirical evi-
dence that the area-based, or volume-
preserving, approach is more reliable
than the traditional point-based, or
non-volume-preserving, approach. Over-
lay and pycnophylactic methods repre-
sent different models for a statistical
surface, and it is expected that the over-
lay method will yield better estimates if
the surface is discontinuous, whereas
the pycnophylactic method gives better
results when smoothness is a real prop-
erty of the surface. In cases where the
surface is intermediate between discon-
tinuous and maximally smooth, differ-
ent target equations and side conditions
should be imposed for reliable results,
but such methods have not yet been de-
veloped.
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(b)
APPENDIX

This appendix illustrates with a brief
worked example the general procedures
involved in interpolation using some of
the methods discussed in the paper.
Since it is impossible to illustrate all
of them here, only those methods which
seem to have a great potential for carto-
graphic applications are shown. They in-
clude 1) distance-weighting, kriging, bi-
cubic spline, and trend surface for point
interpolation, and 2) overlay and pycno-
phylactic for areal interpolation.

Point Interpolation
Consider a simple surface designed by

a 5 x 5 matrix, with the values for six
sample points known (Figure 4a). The
point interpolation problem is to deter-
mine the values for those grid points
whose values are not given.

For the distance-weighting method, if
the inverse distance function w = d-1 is
used, then using equation (3), the value
for point A at (2, 3) becomes

z(2, 3) =

(1.4)-140 + (1.4)-124 + ...+ (2.8)~'25 = 294(1.4)-1 + (1.4)-1 + ...+ (2.8)-1 .

(20)

0
d2 3 5

d

Figure 4. Hypothetical surface and its vari-
ogram

(24-30>' ~ (24-32)" ] = 25.

(.~l)

To calculate the simple Kriging esti-
mate of point A, the semivariogram
function of the surface has to be deter-
mined by using equation (4). For ex-
ample, since there are two pairs of sample
points having a distance of 1.4 units,
the semivariogram function value for
this distance is

.
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rId)

1

r(1.4) = !h

The semivariogram function values for
other distances are calculated in a sim-
ilar way; they are plotted in Figure 4b.
One may derive from the points in the
variogram a theoretical distribution of
the whole surface. Notice that the final
variogram used must be a monotonically
increasing continuous function of dis-
tance, otherwise it may result in the
calculation of negative estimation vari-
ances for certain points on the surface
(Armstrong and Jabin 1981). The most
widely used models for variogram are
linear, spherical, and exponential (Mous-
set-Jones 1980; Olea 1975). For the
sake of brevity, a linear model, such



0 29.7 47.5 29.7 47.5 62.3 1

29.7 1

..

..

...
62.3 47.5 29.7 47.5 29.7 0 1

1111110

as r(d) = bd, where b is the slope, is used
here. A regression line is fitted through
the origin and the slope is found to equal
14.83.

The next step is to apply the following =
system of linear equations to solve for
the weights Aj:

n

I >.J r(dlJ + u = r(dIA) (22)
)-1

for all i = I, n, where r(du) is the semi-
variogram function value for the dis-
tance between sample point i andj, and
u is the Lagrange multiplier. In matrix
form:

r20.8
20.8
29.7
20.8
29.7
41.5

1

.0.26
0.27
0.09
0.27
0.09
0.03
-5.35) .

x =
AI

An
U

(24)

Once the A'S are found, the kriging esti-
mate of A can be calculated by simply
applying equation (5); A is found to be
equal to 29.69. In addition, the estimate
of variance at point A is given by

r(d,,)

r(dnJ

r(d..) 1

r(d..) 1

-I

n

U + L A1r(dIA) = -5.35 + (0.26)20.8
I-I

+... +(0.03)41.5 = 17.88.
(25)

1 01

r(d'A)

r(dnA)
1

x

In this example,

AI

Ae
u

Several steps are involved in calculat-
ing the bicubic spline estimate of point
A. The procedures for calculating bicubic
splines for rectangular surface patches
are presented here. For example, to in-
terpolate the value at point A, the bi-
cubic polynomials for the rectangle
BCDE enclosing A have to be calculated

(23) first. (The value at B is assumed to be

36). These polynomials, which intersect
the sample points and also are twice
differentiable, that is, smooth across
surface patches, are defined by

f'J(x,y) = k~-" a'Jk'(x -XJk-l(y -yJ'-1 (26)

fori=l,...,n-l,j=l,...,m-l,
where a/jkl are the coefficients to be de-
termined. In matrix form,

all = [G(XI>]-'*SII * [G(yJT]-' (27)
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In bicubic splines, the matrices G{xJ,
G{yJ and their inverses are:

for i = 2, ..., n -1;j = 1, m, and

1 ( 1 1 )-;-- r'J-1 + (2 + p) -+ -ru
UYJ-I I).YI-I I).YI

1
+ -rlJ+1

I).YJ

= (3 + P)(PU -PIJ-I + PtJ+I -PI!

)(IlYI-J" (llyJI (33)
1
0

-3th!
2fh3

(28)=

fori=1 n;j=2 m-l.

_.Irlmlqlm qnml:~
Yn Plm I Ulm Unm Pnm

YI p" U" Unl Pol

Irlllqll qnllrnll

I XI Xn I

1+ ~ PI+IJ
uXI

= (3 + P>( UIJ -UI+IJ + UI+IJ -UIJ

)(~XI-J2 (~XJ2 (30) 0 8 -6 0
4 -8 40 24 -8
2 6 24 36 6 (34)

0 8 -6 0

1 3

Different boundary conditions can be
used. In this example, Pu, and qu, are
found by difference approximation, for
example, PII = (36 -24)/2 = 6. The
ru are assumed to be O. Then, according
to equation (27), the coefficients aUk' are
equal to

fori=2,...,n-l,j=1,...,m,
1 ( 1 1

)~ qlJ-1 + (2 + p) ~ + -;- qll

L-'YI-J L-'YI-I L-'YI

1+ -;- qlJ+1
L-'YI

(31)

.1 

0 0 0
]0 1 0 0

-0.75 -1 0.75 -0.5
0.25 0.25 -0.25 0.25

= (3 + P)( UIJ -UIJ-I + UIJ+I -UIJ

(tJoYI-I)2 (tJoyJ2

fori=1,...,n;j=2,...,m-l,
1 ( 1 1

)~rl-IJ +(2+p) -+ -rlJ
uXI-1 tJoXI-1 tJoXI

8,% =

1
+ -r'+IJ

£lx, [24 8 40 8
x 6 0 -8 0

36 -6 24 -6

6 0 -8 0

= (3 + p>( qlJ -q\-IJ + ql+IJ -qlJ

)(6XI-.>2 (6X.>2 (32)
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[ 1 0 0 0 ] -1 0 1 0 0

1 hz hz h3
0 1 2h 3hz

0
1

-2/h
l/ht

0
0

_3/112
-2/h'

-~nt
]!/hI

where h = (x'+1 -x,) or (Y'+l -y,). Bu are
the matrices consisting of the following
elemen~:

[ UIJ qlJ UI.I+I qIJ+I ]PIJ rlJ P1J+1 rl.l+l51J = UI+IJ ql+l.I UI+IJ+I ql+IJ+1 (29)

Pi+1J rl+IJ P1+1J+1 rl+I.I+1 .

Uu are the function values given at point
ij. Pu, qu, ru are the first derivatives
along the x, y, and xy dimensions, re-
spectively; they can be calculated by the
following se~ of equations:

Notice that these equations are tri-
diagonal and differ only on the right-
hand sides. Once Plj, qu, and rjj are
solved, equation (27) can be used for
calculating the coefficients and equation
(26) for interpolating unknown points.

In short, the following values are re-
quired for bicubic spline interpolation.
The corresponding values in this ex-
ample are also given below:



[

1 0 -0.75 0.25
0 1 -1 0.25

0 0 0.75 -0.25
0 0 -0.5 0.25

x

24 

8 0 0
6 0 -10.5 3.5
0 -10.5 15.75 -5.25
0 3.5 -5.25 1.75

=

(35)

According to equation (26), the value at
A becomes

(,2(2.3) = a" (2 -1)0 (2 -1)0

+ a'2 (2 -1)0 (2 -I)' + ...

+ a.. (2 -1)3 (2 -1)3 = 31.0 (36)

To estimate the value at point A by
means of power-series trend-surface
model, we need to solve for the set of
T'n~",Ql ~nuatinns. AssuminE! a first-
I

(

I:~,'I;~;:i::":;;::;;';;'
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Figure 5. Hypothetical source and target zones.
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ZA = 34.4 + (-1.8)2 + (-0.3)3 = 29.9. (43)

Areal Interpolation
Consider a hypothetical surface which

is partitioned into two different sets of
areal units, as shown in Figure 5. Given
the boundaries and population values
for source zones and the target zone
boundaries, the areal interpolation
problem is to estimate the population
values for each target zone from these
source zones.

To obtain an overlay estimate for tar-
get zone D, for example, simply overlay
the two sets of zones, find the area of
intersection of each resultant polygon
(Figure 5), and then apply equation (15):

Vo = L U.atslu. = 10 x 4/6 + 40 x 2/6 = 20.0.
s

(44)

The pycnophylactic estimates for tar-
get zones can be found by the following
algorithm. 1) Superimpose a mesh of
grids (4 x 4 in this example) on the
source zones. 2) Assign the mean pop-
ulation density of the source zone to
each grid within the zone (Figure 6a).
3) In each iteration, change each grid
cell value into the average of its four
neighbors as specified in equation (9).
Neighbors outside the boundary of the
study area can be assigned to 0 or other
values. In this example, they are simply
not taken into account for averaging.
Hence, the value of cell (1, 2) becomes
(1.67 + 1.67 + 5.00)/3 = 2.78. Figure
6b sh9WS the modified grid values after
this step. 4) Add all the grid values in
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Figure 6. Pycnophylactic interpolation.

each zone and convert to population val-
ues. 5) Compare the actual source zone
values (Pk) with the predicted ones
(Pt) and adjust the grid cell values by
multiplying by the ratio between them,
(P/.JPt). For example, source zone A has
a predicted population value of 16.13
after step (4). The new value for cell
(1, 1) becomes diJ x PklPt = 1.67 x
(10/16.13) = 1.04 (Figure 6c). This step
enforces the pycnophylactic condition,
whereas step (3) enforces the smoothing
condition. 6) The process repeats until
either there is no significant difference
between the actual and the predicted
population values or until there are no
significant changes of grid values com"'
pared with the last iteration. Figure 6d

.AM/FM International. A new, not-for-profit, ed-
ucational institution has been formed for persons
interested in utility mapping, distribution engi-
neering, city and county mapping, geographic fa-
cilities management, and other applications of
computer graphics and database systems to
manage spatial data. AMlFM International, short
for Automated Mappi~g and Facilities Manage-
ment International, is concerned principally with
information exchange. It plans to publish a news-
letter and to offer conferences and workshops. For
further information, write:

AM/FM International
5680 South Big Canon Drive
Englewood, CO 80111

[Source: Brimmer Sherman]
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gives the final grid values after 10 inter-
actions. 7) Finally, simply aggregate the
grid cells into target zone boundaries
and sum the grid values. Target zone D
in this case has a value of 17.74.

Tobler (1979) used a different algo-
rithm for pycnophylactic interpolation.
Compared with the above algorithm,
Tobler's algorithm is more complicated
but is believed to provide a faster con-
vergence. Notice that the example given
here is solely for demonstrating the gen-
eral procedures involved in pycnophy-
lactic interpolation. In real applications,
a much finer lattice should be used to
assure the maintenance of both the pyc-
nophylactic and the smoothing condi-
tions.

.Delaware Valley Map Society. Formed in May
1983, the Delaware Valley Map Society is an or-
ganization for all persons in the Greater Philadel-
phia area interested in maps, ancient or modem.
Neophytes or experts are welcome. Meetings will
include informal discussions, lectures, and trips to
sites of interest. For further information, write:

Delaware Valley Map Society
33 Benezet Street
Philadelphia. PA 19118

[Source: David J. Cuff]

.News Deadline. News items to be included in
the April 1984 issue must be received by the Ed-
itor no later than December 15. 1983.

[Source: Ed.]




