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Scale and resolution have long been key issues in geography. The rapid development of anal:-.tical cartography,
GIS; and remote sensing {the mapping sciences} in the last decade has forced the issues of scale and resolution to
be treated formally and better defined. This paper addresses the problem of scale and resolution in geographical
studies, \vith special reference to the mapping sciences. The fractal concept is introduced, and its use in identifying
the scale and resolution problem is discussed. The implications of the scale and resolution problem on studies of
global change and modeling are also explored. Key words: scale, resolution, fractals, mapping sciences.

Scale, Resolution, and Geography areas. Some geographers rely on data obtained

from satellites, yet others depend on data re-

T he concept of scale is central to geography garding pollen counts and soil particles ob-

(Harvey 1969; Meentemeyer 1989; Wat- tained through electronic microscopes. Diver-
son 1978; Woodcock and Strahler 1987). It is sity within the discipline results in the need

one of the main characteristics that portrays to address spatial problems from multiple

geographic data and provides a unique percep- scales and resolutions.

tion of spatial attributes as they relate to form, This variation in scales can be regarded both

process, and dimension. Geographers often as a strength and weakness of the discipline.

deal with spatial phenomena of various scales. Analyzing geographical phenomena using a

For example, geomorphology encompasses range of scales offers a special view and meth-
stUdies ranging from patterns of river net- ' odology that other disciplines seldom employ,

\vorks, river basins, and coastline changes to enhancing geography's strength. To the con-

potholes, cave, and gully formation based on trary, the massive amount of data needed for

international, national, regional, or local analysis of spatial phenomena at various scales,

scales. Climatologists study upper air circula- coupled with the possibility of applying an

tion around the globe as \vell as effects of local inappropriate methodology, often leads to a

climate on agricultural production and health. meaningless study. This invites criticism and

Urban geography includes studies ranging confusion from within the discipline and from

from analyzing the urban systems in an in~er- other related disciplines.
national, national, or regional context to as- This paper does not attempt to solve issues
sessing the impact of facility location on local of scale and resolution, but rather brings to-
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SCALE Closely related to scale is the concept of
resolution. Resolution refers to the smallest
distinguishaoleparts in an object or a sequence
(Tobler 1988), and is often determined by the
capability of the instrument or the sampling
interval used in a stUdy. A map containing
data by county is considered of finer spatial
resolution than a map by state. In reference to
the three meanings of scale, small-scale stUdies
usually employ data of finer spatial resolution
than large-scale studies. Small-scale maps, on
the contrary, often contain lower or coarser
resolution data than large-scale maps. Finally,
phenomena operating at a smaller scale, such
as potholes and caves, require data of finer
resolution. Because large-scale studies (geo-
graphic or observation scale) involving fine res-
olution are rather uncommon, scale and reso-
lution are often blended together and loosely
referred to as "scale," although it is recognized
that a large-scale stUdy does not necessarily
mean that it has a coarser resolution, and vice
versa. In this paper the notion of the resolution
is generally implied whenever the term scale
is used.

-

~ ~ ~"" SPATIAL -SPATIo- TEMPORAL -TEMPORAL

~ ~,

~~

GEOGRAPHIC OPERATIONAL
(or Observation)

Figure 1: Meanings of scale.
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gether important points regarding scale and
resolution in light of recent developments, and
proposes the use of fractals for analyzing spa-
tial phenomena encompassing various scales.
With appropriate methodology and sufficient
attention to the problem of scale, we believe
that the geographical perspective derived from
analysis using differing scales can contribute
in many \vays to an understanding of various
spatial phenomena. This is particularly im-
portant in relating earth processes or other
spatial and environmental phenomena within
the context of global dynamics (e.g., the In-
ternational Geosphere/Biosphere Program).

Controversies over the exact definition and
measurement of scale and resolution exist
(Woodcock and Strahler 1987). Some clarifi-
cation of terminology, therefore, is necessary.
The term scale may include all aspects-spa-
tial, temporal, or spatio-temporal (Fig. 1). In
this paper \ve focus on spatial scale. There are
at least three meanings of scale. First, the term
scale may be used to denote the spatial extent
of a study (i.e., geographic scale or scale of
observation). For example, a spatial analysis
of land use across the entire United States is
considered a large-scale study, as compared to
a land use plan for a city. This definition of
scale is quite different from the second use
called cartographic scale, where a large-scale
map covers smaller area but generally with
more detail, and a small-scale map covers
larger area \\1th less detail. The third usage of
scale refers to the spatial extent at which a

particular phenomenon operates (i.e., opera-
tional scale). For example, mountain-building
processes operate at a much larger scale than
that of river pothole formation. These three
meanings of scale, however, are often mixed
and used vaguely in the literature.

Methodological Issues Related to
Scale and Resolution

Several methodological dilemmas surrounding
the scale and resolution issue can be summa-
rized here. First, different spatial processes
operate at different scales, and thus interpre-
tations based on data of one scale may not
apply to another scale (Harvey 1968, 1969;
Stone 1972). The noted "ecological fallacy" in
spatial analysis, making inferences about phe-
nomena observed at differing scales or imply-
ing finer resolution from coarser resolution
data, attests to this problem. A simple example
by Robinson (1950) sho\vs that correlations
between t\vo variables, measured IQ and race,
decreased from 0.94 to 0.73, and finally to
0.20, as resolution increased from census re-
gion, to state, and to individual study scales
(Openshaw 1984).

Because spatial patterns are usually scale
specific, inferring spatial process from spatial
pattern is perplexing; this is illustrated by the
well-known dilemma of different processes
leading to the same spatial pattern (Harvey
1969; Turner et al. 1989b). Moreover, a spatial
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and landscape patterns, and to utilize fully
remote sensing and GIS.

In an integrated GIS and remote sensing
system, data of various types, scales, and res-
olutions are used. How will the analytical
methods and results be affected by different
scales and resolutions? What is the relationship
between scale and accuracy? The selection of
an appropriate scale is also influenced by the
techniques used to extract information from
remote sensing data. The factors of scale and
resolution, therefore, have become a major re-
search direction in GIS and remote sensing.

pattern may look clustered at one scale but
random at another. For example, the mortality
pattern of leukemia cancer in China appears
randomly distributed if based on county-level
data; if the data are aggregated and reported
by province, a clustered geographical pattern
results (Lam et al. 1989). Depending upon the
scale of observation, therefore, processes that
appear homogeneous at a small scale may be-
come heterogeneous at a larger scale. This may
be exemplified by patterns of coniferous for-
ests infested \vith pine bark beetle blight. At
a small spatial scale, the patterns of infected
individual trees or groups of trees \\.ithin the
forest are not evident, because the pattern of
insect damage becomes integrated as part of
the spatially homogeneous coniferous forest.
At a large geographic scale, ho\vever, groups
of trees infected \\.ith pine bark beetle blight
appear as patches of dead trees and can be
easily distinguished from other trees. Thus,
the pattern of insect infestation becomes het-
erogeneous at larger scales. How do we kno\\.
\vhat scale and resolution we should use? And
how do wekno\v \vhen the results are mean-
ingful and valid given the scale and resolution
of the data?

Rapid development in the mapping sci-
ences, particularly GIS and remote sensing,
in the last decade has to a great extent "for-
malized" the scale and resolution problem. An
immediate question in designing a GIS and
remote sensing system is: what scale and res-
olution should \ve use for a specific applica-
tion? For example, shall we use a 1:24,000 or
1:250,000 scale map? Will Landsat TM im-
agery (with a pixel size of 30m) be more ap-
propriate than Landsat MSS imagery (80m
pixel)? Shall \ve sample or update the data
every five or 10 years? The concern here is
both theoretical and practical. Increased res-
olution will increase data storage and process-
ing time, \vhereas decreased resolution leads
to inaccuracy that compounds quickly when
several types of data are overlaid and analyzed.
What is the optimum resolution or does an
optimum really exist? Ultimately, the "best"
resolution depends upon the study objectives,
the type of environment, and the kind of in-
formation desired. Hence, much more \vork
is required to understand the effects of scale
in interpreting variability in earth processes

A Brief Description of Fractals

Fractals are now widely used for measuring,
as well as simulating, forms and processes and
are attractive as a spatial analytical tool in the
mapping sciences. Since Mandelbrot coined
the term in 1975 (Mandelbrot 1977), the con-
cept has been further developed and expanded
across virtually every major discipline. Works
by Mandelbrot (1977, 1983), Peitgen and
Saupe (1988), Feder (1988), and more recently
Falconer (1990) articulate some of the thought-
provoking issues related to fractal analysis. An
overview of the use of fractals in geography
has been presented by Goodchild and Mark
(1987) and recently by Lam and De Cola

(forthcoming).
Fractals were derived mainly because of the

difficulty in analyzing spatial forms and pro-
cesses by classical geometry. In classical ge-
ometry (i.e., Euclidean geometry), the dimen-
sion of a curve is defined as I, a plane as 2,
and a cube as 3. This is called topological
dimension (Dr). In fractal geometry, the fractal
dimension D of a curve can be any value be-
t\veen 1 and 2, and a surface between 2 and
3, according to the complexity of the curve
and surface. Coastlines have fractal dimension
values typically around 1.2, and relief dimen-
sions around 2.2. Fractal dimensions of 1.5
and 2.5 for lines and surfaces, respectively, are
too large (i.e., irregular) for modeling earth
features (Mandelbrot 1983, 260 and 264-65).

The key concept underlying fractals is self-
similarity. Many curves and surfaces are self-
similar either strictly or statistically, meaning
that the curve or surface is made up of copies
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(a)
m=4.r=1/4

D = -log (4)/log (1/4) = 1

(b)

EB
m=4.r= 1/2

D = -log (4)/log (1/2) =:l

(c)
~_../\- m=4.r=1/3
~"LA- D = -log (4)/log (1/3) = 1.2618

Figure 2: Relationships between fractal
dimension (0), number of copies (m), and scale
factor (r).

of itself in a reduced scale. The number of
copies (m) and the scale reduction factor (r)
can be used to determine the dimensionality
of the curve or surface, where D = -log(m)/
log(r) (Falconer 1990). For. example, in Figure
2a, a line segment is made up of four copies
of itself, scaled by a factor V4 (i.e., one-fourth
of the line length), and the dimension D =
-log4/log(V4) = 1. A square (Fig. 2b) is made
up of four copies of itself and scaled by a factor
V2 (i.e., half of the side length), thus yielding
D = -log4/log(V2) = 2. Similarly, a von Koch
curve is made up of four copies of itself \vith
a scaled factor V3 and having dimension D =
-log4/log(V3) = 1.262 (Fig. 2c).

Practically, the D value of a curve (e.g.,
coastline) is estimated by measuring the length
of the curve using various step sizes. The more
irregular the curve, the greater increase in
length as step size decreases; D can also be
calculated for a curve by the regression equa-
tion logL = C + BlogG and D = 1 -B,
where L is the length of the curve, G is the
step size, B is the slope of the regression, and
C is a constant. The 1;) value of a surface can
be estimated in a similar fashion and several
algorithms for measuring surface dimension
have already been developed (e.g., Shelberg et
al. 1983). A scatterplot illustrating the rela-
tionship between step size and line length in
logarithmic form (i.e., fractal plot) becomes
the source of the derivation of fractal dimen-
sion. An example of a fractal plot using the
Louisiana coastline and its corresponding map

Figure 3: (a) Louisiana coastline and its

subdivisions; coasts A to F are: Chenier plain,

Sale-Cypremort subdelta, Teche and Lafourche

subdeltas, Plaquemines and Balize subdeltas,
St. Bernard subdelta, and Lake Ponchartrain and

Lake Borgne; (b) corresponding fractal plot; the

bars on each curve show the range of points

(i.e., steps) used in the regression and thus
define the self-similarity range; the number of

steps used for coasts A to F and the overall

coastline (LA)-are 9,7,5,6,5,6, and 11,

respectively. (Adapted from Diu 1988 and Lam

and Diu, forthcoming).

is shown in Figure 3 (Lam and Qiu, forthcom-
ing; Qiu 1988). Previous stUdies have dem-
onstrated that fractal plots of empirical curves
and surfaces are seldom linear, with many of
them demonstrating an obvious break (Butten-
field 1989; Goodchild 1980; Mark and Aron-
son 1984). This indicates that true fractals
with self-similarity at all scales are uncommon.
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in the fractal literature, such as the concepts
of self-affinity, random fractals, and multi-
fractals, have expanded fractal applications to
many phenomena \vhere true fractals with
strict self-similarity do not exist. At the same
time, fractals have generated criticisms from
researchers in various disciplines, and indeed
there are limitations in effectively applying
fractals.

Fractals in the Mapping Sciences

There is a relative paucity of research that
employs fractals in the mapping sciences.
Goodchild (1980) in a pioneer article demon-
strated that the fractal dimension can be used
to predict the effects of cartographic general-
ization and spatial sampling, a result that may
help in determining the appropriate resolution
of pixels and polygons used in studies related
to GIS and remote sensing. Muller (1986) pro-
posed the use of fractal dimension as a guiding
principle for future implementation of gener-
alization algorithms in automated cartography.
Fractal surfaces have been used as test data
sets to examine the performance of various
spatial interpolation methods (Lam 1982,

The fact that self-similarity exists only over a
limited range of scales could be utilized posi-
tively, ho\vever, to summarize scale changes.
Thus, fractals are potentially useful tools for
investigating the issues of scale and resolution.

Based on the self-similarity concept, curves
and surfaces of various diinensionalities can be
generated, and it is the simulation capability
of fractals that makes this technique a favora-
ble tool for spatial analysis. Moreover, various
objects and structures, such as planets, clouds,
ocean floors, trees, particle growth, and urban
morphology can be simulated using fractals
(Peitgen and Richter 1986; Peitgen and Saupe
1988). Several methods have been developed
to simulate fractal curves and surfaces, includ-
ing the shear displacement method, the mod-
ified Markov method, the inverse Fourier
transform method, and the recursive subdivi-
sion method (e.g., Carpenter 1981; Dutton
1981; Fournier et al. 1982). Figure 4 sho\vs
some sample surfaces with different D values
generated using a shear displacement algo-
rithm (Goodchild 1980; Lam 1990).

The foregoing description of fractals is
rather elementary and intentionally made sim-
ple. There are many other ways of defining
fractal dimensions and hence, the applications
of fractals vary extensively. Recent additions

2.2
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Figure 4: Examples of fractal surfaces generated using a shear displacement algorithm.

Source: Lam 1990



Scale, ResolutiOIl, alld Fractal Analysis 93

tal conditions over extensive areas of the earth.
O'Neill et al. (1988) sho\\ed that the fractal
dimension has a highly significant correlation
\vith the degree of human manipulation of the
landscape. Landscapes dominated by agricul-
ture tend to have simple polygons and low
fractal dimensions (negative correlation), and
landscapes dominated by forest tend to have
complex shapes and high fractal dimensions
(positive correlation). Thus, the application of
fractals allo\\.s not only a different and con-
venient \vay of describing spatial patterns, but
also the generation of hypotheses about the
causes of the patterns. The above suggestions
open new directions for the potential applica-
tion of fractals.

Fractals, Scale, and Resolution

It is apparent that the fractal model is a useful
tool for simulation and modeling. Fractal anal-
ysis of spatial forms and processes, however,
can be limited by problems at both the theo-
retical and technical levels (Lam 1990). The
first and foremost problem relates directly to
scale and resolution. The self-similarity prop-
erty underlying the original fractal model as-
sumes that the form or pattern of the ~patial
phenomenon remains unchanged throughout
all scales, implying that one cannot, through
fractal analysis, determine the scale of the spa-
tial phenomenon from its form or pattern.
This kind of strict self-similarit}' is considered
unacceptable in principle, and hence, has gen-
erated criticism about the spatial application
of fractals- Empirical studies have shown that
most real-world cur\-es and surfaces are not
pure fractals \\"ith a constant D at all scales.
Instead, D varies across a range of scales
(Goodchild 1980; Mark and Aronson 1984).
These findings, however, can be interpreted
positively. Rather than using D in the strict
sense as defined by Mandelbrot (1983), it is
possible to use the D parameter to summarize
the scale changes of the spatial phenomenon.
This latter use of fractals is supported by the
results from Burrough's (1981) work, \vhere it
is suggested that ~Iandelbrot's D value can be
used as an indicator over many scales for nat-
ural phenomena. Through interpretation of D
values, therefore, it may be possible to relate
or separate scales of variation that might be
the result of particular natural processes.

1983) and to assess the efficiency of a quad tree
data structure (Mark and Lauzon 1985). Frac-
tal curve generation, on the other hand, has
been used as an interpolation method and as
the inverse of curve generalization by adding
more details to the generalized curve (Carpen-
ter 1981; Dutton 1981; Jiang 1984).

The use of fractals in remote sensing is rel-
atively ne\v and seems to have great potential.
De Cola (1989) applies fractal analysis to land
cover patterns derived from Landsat Thematic
Mapper (TM) data and concludes that self-
similarity, fractal dimension, and Pareto size
parameter are useful measures for analyzing
digital images. His results also show that ur-
ban land cover gives rise to more complicated
spatial patterns than does intensive agricul-
ture. In a study comparing urban, rural, and
coastal areas using Landsat TM imagery, Lam
(1990) has demonstrated that different land
cover types have different fractal dimensions
in different bands. Urban land cover \vas
found to have the highest dimension, followed
closely by coastal and rural land cover types.

In addition to the two types of applications
mentioned above, fractal surfaces have been
suggested as a null-hypothesis terrain or norm
whereby further simulation of various geo-
morphic processes can be made (Goodchild
and Mark 1987). Similarly, Loehle (1983), in
a paper examining the applications of fractal
concepts in ecology, suggested using the frac-
tal dimension as a parameter summarizing the
effect of a certain process up to a particular
scale. He also proposed the use of the self-
similarity property as a null hypothesis. In
other work by Burrough (1981), it was sho\vn
that many environmental variables are fractals
with varying fractal dimensions, and that the
examination of D values would be useful for
separating scales of variation that might be the
result of natural processes.

Furthermore, fractals can help formulate
hypotheses concerning the spatial scale of pro-
cess-pattern interactions (Krummel et al.
1987). It was also concluded that fractal tech-
niques should be particularly applicable to
analysis of remotely sensed data, since it pro-
vides D as a simple measure that indicates the
scale at which processes are occurring (i.e.,
operational scale). Changes in D computed
from remote sensing data, therefore, have pri-
mary implications for changes in environmen-~
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The second problem of applying fractals re-
lates to the technical aspect of fractal mea-
surement, The fact that self-similarity exists
only within certain ranges of scales ~akes it
difficult to determine a breaking point for self-
similarity; i.e., a point at \\'hich self-similarity
ends for a curve or surface (Fig. 3b). This
affects the final D value, \vhich is then used
to characterize the curve or surface (Butten-
field 1989). Furthermore, there is some ques-
tion as to whether maps or map products pro-
vide sufficient detail to accurately measure the
fractal dimension (Carstensen 1989). The cal-
culation of the fractal dimension for surfaces
presents an added technical problem. Roy et
al. (1987) have shown that for the same sur-
face, different D values could result from us-
ing different algorithms, with a range as low
as 2.01 to a high of 2.33. Finally, all the ex-
isting methods have so far been applied only
to regular grid data, such as digital terrain
model data or Landsat TM data. Fractal mea-
surement of many other socio-economic phe-
nomena, such as population and disease dis-
tributions, or environmental process-response
phenomena, presents another challenge. For
example, identification of the patterns of pine
bark beetle infestation\vithin a forest may re-
veal insight into possible causes-responses of
forest landscape dynamics as affected by insect
infestation. These data are typically reported
in an aggregate polygonal form, with irregular
boundaries and possibly holes (in the forms of
lakes or islands) or missing data. The existing
algorithms used to delineate such features will
have to be modified and extra steps will have
to be taken before actual measurement takes
place (Krummel et al. 1987).

variables influencing the process at different
scales must be understood. Third, the appro-
priate methods for translating the results from
one scale to another must be de\"eloped. Fi-
nally, the methods and results must be tested
across scales.

Several methods have been employed to ex-
amine issues related to the scale and resolution
problem, including for example, spectral anal-
ysis (Moellering and Tobler 1972), moving
standard deviation measures (Woodcock and
Strahler 1987), and variance and spatial cor-
relation measures (Carlile et al. 1989). With
consideration of the conceptual and technical
uncertainties associated \\.ith their use, fractals
could contribute to all four steps noted above.
Fractals could be used to identify the spatial
and temporal scale of the process. The fractal
plot of step size against line length or area
measurement can be used to determine the
dimension values and their corresponding self-
similarity ranges. These values can be utilized
to help identify the underlying processes cre-
ating the patterns. Since most natural curves
are not strictly self-similar, the derivations of
the fractal dimension and associated self-sim-
ilarity range are often based only on the range
of points sho\ving linearity (Fig. 3b).

For example, a study of the Louisiana coast-
line by Qiu (1988) has demonstrated that
coasts of different origins and development
stages are distinguishable by their fractal di-
mension values and associated self-similarity
ranges (Lam and Qiu, forthcoming). Coasts
dominated by deltaic processes generally have
higher fractal dimensions (about 1.3) with a
narro\ver scale range of 0.~12.8 km, \vhile
coasts dominated by marine processes have
lo\ver dimensions (about 1.1) and a wider self-
similarity range of 0.2-51.2 km (Fig. 3a and
b).

In analyzing China's cancer mortality pat-
terns using data by commune for the Taihu
Region, Lam and Qiu (1990) have demon-
strated that distinct self-similarity ranges exist
in the three leading cancer mortality patterns
in China (stomach, esophagus, and liver).
Fractal dimensions and self-similar ranges for
these cancer surfaces were computed by the
variogram method (Mark and Aronson 1984).
Figure 5 is the variogram plot in logarithmic
form illustrating the relationship be~veen dis-

A Research Agenda

As mentioned previously, the basic question
surrounding the issues of scale and resolution
is: can a study predicated on or founded at
one scale be used to make inferences to the
same phenomena under observation at differ-
ent scales? To ans\ver this question, several
interrelated steps are involved (Turner et al.
1989a). First, the spatial and temporal scale of
the process must be identified. Second, the
importance or changes in importance of the
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scales and so does the importance of control-
ling factors. Cancer mortality stUdies can again
provide an example in this context (Lam et al.
1989). It is possible that, as a first step, the
broad environmental context fo,certain cancer
types can be determined by the typical GIS-
overlaying methodology using large scale,
coarse resolution data (e.g., climate, relief).
This is then followed by a small scale, finer
resolution study investigating local factors
(e.g., industrial locations, \vater supply). An-
other example that requires data of various
scales is in veterinary medicine and parasitol-
ogy. Coarse resolution satellite data, such as
those obtained from the A VHRR (Advanced
Very High Resolution Radiometer) with an
average pixel resolution of 1 km, could be used
to monitor and identify broad areas of large
animal parasite habitats (e.g., snails, mosqui-
tos). The broad areas of habitat could then be
refined using finer resolution remote sensing
data, such as airborne scanner data with pixel
resolution of five meters or less. Fractals, along
with other statistical measures, can be used to
determine the complexity and spatial cluster-
ing of these patterns, thus providing clues on
the existence of certain factors related to the
distribution of parasite habitatS.

The capability of fractal models in simula-
tion, or rather, interpolation or extrapolation,
provides another method for translating results
across scales. If the phenomenon of interest
displays a self-similarity property with a rel-
atively stable dimensionality, one can invert
the process and re-generate the pattern based
on the fractal dimension value. The issue of
line generalization and line generation, which
has been a subject of intense research in ana-
lytical cartography, is basically an issue of
ttanslating results across scales. Fractals, al-
though with relatively less success, have
played an important role in this realm of anal-
ysis (e.g., Dutton 1981; Jiang 1984; Muller
1986). More stUdies in this area, however, are
needed.

Finally, fractal analysis can be used as a
means to test the results across multiple scales.
In addition to the cancer stUdies mentioned
earlier, research is now underway in which
digital remote sensing images of different res-
olutions are being tested and examined by
means of fractals (Quattrochi and Lam 1991).

tance and variance (or squared difference) for
all three cancer patterns. Fractal dimensions
of these patterns can be determined by the
equation D = 3 -(B/2), where B is the slope
of the individual regression line through the
respective points in the variogram. In this
study the mortality pattern of liver cancer was
found to have the highest dimension (D =
2.86), followed by stomach (D = 2.76) and
esophageal (D = 2.71). The linearity exhibited
on the variogram plot for all three patterns
indicates that self-similarity exists within cer-
tain scale ranges. The patterns behave differ-
ently, however, when reaching a certain scale
or in this case, a distance range (i.e., the break
point in the variogram plot). Esophageal and
liver cancers have similar distance limits of
about 5-150 km, while the limit is approxi-
mately 5-90 km for stomach cancer. This sug-
gests that if the communes are aggregated to
a distance range as large as the limit, the pat-
terns would look very different and would
result in a different interpretation of the pro-
cesses underlying the patterns as defined by
that level of scale and resolution. Furthermore,
it is suspected that whatever the underlying
controlling factors (e.g., climate, topography,
pollution), they are likely to operate in scale
ranges similar to those of the cancer mortali-
ties.

Different processes operate at different
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Literature CitedThe results will provide insights \vith regard
to scale, resolution, accuracy, and landscape
representation. Fractals may offer a useful per-
spective on predicting spatial, environmental,
and ecological system dynamics by revealing
the self-similarity of phenomena at different
scales, in rum, providing better models in a
hierarchical frame\vork for the analysis of scale
(O'Neill et al. 1989).

The issues of scale and resolution are no\\"
emerging as important aspects of the mapping
sciences that will have a significant place in
global change and global modeling studies
(NASA 1988; Wickland 1989). It is recognized
that more than a single scale of observation
may exist, thereby necessitating measurement
at several levels of resolution. One of the major
analytical challenges in studying global pro-
cesses is to develop measurement sampling
techniques that \vill elucidate how these pro-
cesses range over broad spatial and temporal
scales. Fractal analysis may become a major
tool for measuring, and ultimately predicting,
ho\v landscape patterns and distributions, as
important contributors to land-atmosphere
global processes, change through a hierarchy
of scales. Fractals may also be useful in iden-
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