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With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing
System) era, it is necessary to develop efficient and innovative tools to handle and
analyze these data so that environmental conditions can be assessed and monitored. A
main difficulty facing geographers and environmental scientists in environmental assess-
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ment and measurement is that spatial analytical tools are not easily accessible. We have
recently developed a remote sensing/GIS software module called ICAMS (Image Char-
acterization And Modeling System) to provide specialized spatial analytical tools for
the measurement and characterization of satellite and other forms of spatial data.
ICAMS runs on both the Intergraph-MGE and the Arc/Info Unix and Windows-NT
platforms. The main techniques in ICAMS include fractal measurement methods,
variogram analysis, spatial autocorrelation statistics, textural measures, aggregation
techniques, normalized difference vegetation index (NDVI), and delineation of land/
water and vegetated/non-vegetated boundaries. In this article, we demonstrate the
main applications of ICAMS on the Intergraph-MGE platform using Landsat-
Thematic Mapper images from the city of Lake Charles, Louisiana. Through the
availability of ICAMS to a wider scientific community, we hope to generate various
studies so that improved algorithms and more reliable models for environmental
assessment and monitoring can be developed. @ 1998 john Wiley & Sons, Inc.

INTRODUCTION

The use of remote sensing data in global environmental modeling studies has grown
rapidly in the last decade, owing largely to the increasing availability of these and other
types of spatial data in digital form at global, regional, and local scales, from many
sources. The National Aeronautics and Space Administration's Earth Observing System
(NASA-EOS) initiative, to be launched late in this century, will add a plethora of spatial
data that will help in more effectively assessing environmental conditions and managing
natural resources. The fast pace of increase in digital data, however, presents an imme-
diate problem, that is, how these data can be handled and analyzed efficiently (justice
et al., 1995). Advances in environmental monitoring and assessment require three com-
ponents. In addition to high-quality data sets, we need reliable tools to handle and
analyze these data sets, and such tools must be made available to the research and
policy-making communities.

The current state of environmental research recognizes that the Earth's environment
is so complex that it is difficult, if not impossible, to understand all of its processes. Yet
an understanding of all the processes i~ needed to formulate effective environmental
policies. Among the problems involved in environmental modeling is that researchers
are often impaired by the lack of analytical tools to analyze remote sensing data. Geo-
graphic information systems (GIS) and quantitative models offer an attractive set of
techniques for environmental modeling and are increasingly recognized as a vital part of
research in resource management, environmental risk assessment, and global monitor-
ing and modeling. Integration of environmental modeling and spatial tech~iques is
considered a top research priority, and in order to make full use of available digital data
for effective environmental research the immediate need is to develop user-friendly
computer systems that include useful spatial analytical functions for high-quality data
(Goodchild et al., 1993).

An integral part of understanding earth processes as a system is to understand how
to combine data with different spatial and temporal properties in a meaningful way. This
type of multiscale data integration and modeling is a necessary component in environ-
mental research, as environmental and ecological phenomena are scale dependent in
nature. Quattrochi and Goodchild (1997) documented some of the more important
scale issues in remote sensing and GIS. For example, one of the basic goals of land-
atmospheric interaction modeling research is to be able to move up and down the spatial
scales so that the results at one scale can be inferred to another scale (Kineman, 1993;
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Steyaert, 1993; Townshend and Justice, 1988; Turner et al., 1989a, 1989b). Extrapolation
of results across broad spatial scales remains the most difficult problem in global envi-
ronmental research. Many methods have been suggested to tackle the scale and resolu-
tion problem. Whichever method is used, we believe that basic characterization and
parameterization of image data is a prerequisite, and techniques for measuring scale
effects must be developed and implemented to allow for a multiscale assessment of these
data before any usefu. process-oriented modeling involving scale-dependent data can be
made.

We have recently developed a data characterization and analysis GIS module called
ICAMS (Image Characterization And Modeling System) to address two of the three
following components: the research and development of innovative spatial analytical and
measurement tools for characterizing multiscale remote sensing data, and the bundling
of these measurement tools into an integrated, user-friendly, interactive module for easy
access by the general scientific community. This article presents some of the initial
results of the ICAMS project. A brief description of the design principles and functions
of ICAMS, with a focus on the Intergraph-MGE platform, is first provided. Using two
Landsat-Thematic Mapper (TM) images from the city of Lake Charles, Louisiana, we
demonstrate the functionality of ICAMS in characterizing and measuring remote sensing
images. Interpretations of the resultant indices and boundaries are presented, and sug-
gestions are then made on how they can be used in assessing and monitoring environ-
mental conditions.

THE ICAMS MODULE

A description of an earlier version of ICAMS on the Arc/Info platform can be found in
Quattrochi, Lam, et al. (1997). In the following, we highlight the software objectives,
design principles, and main functions of ICAMS, and demonstrate example applications
with the use of ICAMS on the Intergraph-MGE platform. It should be noted that the
same algorithms have been implemented on both Intergraph-MGE and Arc/Info plat-
forms, but because each system has its own display and system requirements, the graphic
displays and procedures to run ICAMS may be different.

Objectives and Design Principles

lCAMS is designed to provide scientists with innovative spatial analytical tools to visual-
ize, measure, and characterize landscape patterns so that environmental conditions or
processes can be assessed and monitored more effectively. In developing lCAMS, we
emphasize three design elements: interactive, integrative, and innovative (the three Is).
Our primary goal is to provide specialized image characterization functions, such as
fractal analysis, variogram analysis, and multiscale analysis, that are not easily available in
commercial GIS software. Also, we have developed lCAMS as a module compatible with
the two most widely used GIS software, Intergraph-MGE and Arc/Info, instead of devel-
oping it on a generic, stand-alone platform. Also, Arc/Info has a link with another
advanced image processing software-ERDAS/lMAGINE. The advantages of building a
module on these two commercial GIS platforms are twofold. First, using these platforms
we can utilize most of the basic image input, output, and interface functions such as file
transfers, image displays, and image outputs, without the need to re-program these basic
functions from ground zero. This minimizes duplication and ensures that the specialized
functions in lCAMS can be made available within a shorter time frame by circumventing
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extensive and time-consuming software development. Second, because these platforms
have been widely used, a specialized module designed to be compatible with these
systems will encourage a wider access of ICAMS.

Main Functions

ICAMS has four subsystems: image input, image output, image characterization, and
specialized functions (Figure 1). The image input subsystem includes basic image pro-
cessing functions, such as file transformation, georeferencing, image registration, and a
variety of image viewing capabilities. The image output subsystem contains functions to
output original images or derived products in two-dimensional or three-dimensional
form. Moreover, the output from ICAMS (e.g., land/water boundaries) can be integrated
with other forms of GIS data (e.g., economic/political boundaries) for further analysis.
Most of the functions in these two subsystems already exist in Intergraph-MGE and
Arc/Info. We utilize mainly their macro languages and Microsoft C++ to integrate these
functions together to create the input and output subsystems in ICAMS.

In addition to providing basic descriptive statistics and histograms, the image char-
acterization subsystem computes fractal dimensions (Lam and De Cola, 1993), vario-
grams (Burrough, 1993; Mark and Aronson, 1984), spatial autocorrelation indices
(Goodchild, 1986; Lam, Fan, and Liu, 1996), and local variance (Woodcock and Strahler,
1987). These spatial analytical tools have proved useful in the analysis of other forms of
spatial data. However, their uses in characterizing remote sensing images have not been
extensively employed. The availability of these functions, bundled together in an inter-
active GIS framework, should provide ample opportunities for the user to evaluate and
explore new applications of remote sensing images using these techniques.

The specialized functions subsystem calculates the NDVI, or normalized difference
vegetation index (Lillesand and Kiefer, 1994) and temperature (Lobitz, 1994; Markham
and Barker, 1986), and, based on the NDVI values, the user can delineate land/water or
vegetated/nonvegetated boundaries (Cherukuri, 1994). Although improved vegetation
indices have been developed, such as SAVI, or Soil-Adjusted Vegetation Index, and ARVI,
or Atmospherically Resistant Vegetation Index (Running, et al., 1994), NDVI is still
considered important because the new indices generally require additional information
that may not be available. Moreover, the u.S. EROS Data Center generates NDVI indices
and maps on a regular basis.

Image Characterization And Modeling System
(ICAMS)

Image Input

I
FonIlat Transformation

Geo-referencing
Co-registration

Noise removal/filtering

Image: Display & OutputImage ChaIa(:terization Specialized Functions

Descriptive Statistics
Histograms

Fractal Analysis
Variogram Analysis

Spatial Autocorrelation
Textural Mleasures

Twc>-dimensional Map
Three-dimensional Map

Statistics Output
Di!~tal Image Output

NDVI
Land/Water Interfaa~

Vegetated/N onvegeta1:ed

Aggregation routines
(Multi scale Analysi~:)

Figure 1 Main functions of ICAMS.
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An aggregation function is provided to resample the image according to a filter size
specified by the user. The aggregation function currently implemented is simply an
averaging/smoothing function. It computes the average of all the pixels within a filter
and replaces the filter with the average value. The aggregated image can be applied to
the image characterization subsystem again to re-compute fractal dimensions, NDVI, or
temperature, or redefine the land/water interface boundaries to evaluate the scale
effects on indices and boundaries. The changes in these index values with scale (resam-
pled image) will reveal the basic structure of the phenomena as manifested by the image
and uncertainties in measurement due to scale. This information will be useful to the
formulation of more accurate global environmental models, particularly those applied at
multiple spatial scales.

AN APPliCATION

Study Area

Landsat-TM images acquired on two different dates from Lake Charles, Louisiana, are
used to demonstrate some of the functions of ICAMS. Lake Charles had a population of
about 75,000 in 1980, which decreased to 71,000 in 1992. The first image was acquired
on November 30, 1984, and the second on February 8, 19~)3. Subsets of a 5-km x 5-km
area with a pixel resolution of 25-m x 25-m were created, with each subset containing
201 x 201 pixels. Because the pixel size of the 1984 image was fixed to 25 m, the 1993
image that was provided by EOSAT at approximately 28 ill was resampled to the same
size, to enhance comparison. The subsets cover part of Lake Charles. The 1984 subset
has been used as a representative urban landscape in a previous study that examines the
fractal properties of remote sensing images (Lam, 1990). The selection of the same study
area for the present study is based on the availability of data on two dates, so that analysis
of temporal changes can be made. At the same time, we realize that the study area covers
a medium-size urban area with little urban growth; therefore, significant changes in
terms of land cover are not expected in this region between these two dates.

Figure 2 displays two images using bands 2 (blue), 3 (green), and 4 (red). Although
large changes in land cover were not expected, a visual comparison between the two
images shows that the 1993 image has slightly more roads and buildings, especially in the
southeast corner and along the highway (Highway 210) in the southern part of the
image. Table 1 lists the summary statistics of all seven bands for the two images. With
the exception of the thermal band (band 6), the 1993 image generally has smaller ranges
of spectral reflectance values, lower maximum values, and smaller coefficients of varia-
tion. Although these two Landsat images were not normalized to minimize sensor cali-
bration offsets and differences in atmospheric effects [for example, using the "dark
object subtraction" technique (Coppin and Bauer, 1994)], these aspatial measures of
data variability can still be used and interpreted in conjunction with the spatial measures
computed below.

Landscape Characterization with the Use
of Fractal Indices

The fractal analysis module in lCAMS was applied to the two images to examine their
spatial characteristics. The overarching question for this section of analysis is, how fractal
dimensions change with spectral band, pixel resolution, and date of the image. The
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Figure 2 False color composite of the 1984 (top) and 1993 (bottom)
images using bands 2 (blue), 3 (green), and 4 (red).

answer to this question, if tested with more images and analyses in the future, can be
used to determine whether fractal dimension is an effective means for assessing and
monitoring environmental conditions or landscape characteristics from remote sensing
data.

There has been voluminous literature on the concepts and uses of fractals since
Mandelbrot coined the term in 1975 (Mandelbrot, 1977, 1983). In geosciences, fractals
have been used mainly for measuring and simulating spatial forms and processes, and
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TABLE 1 .Summary Statistics of the Original and Resampled 1984 and 1993 Images

Original 1984 Original 1993

Band Min Max Mean S.D. C.JI: Min Max Mean S.D. C.Jl:

1
2
3
4
5
6
7

40
13

8
4
0

116
0

255
126
158
138
232
146
148

70
27
31
46
52

132
22

13
8

11
12
17
4

10

0.18
0.28
0.36
0.26
0.33
0.03
0.45

35
15
13
6
0

109
0

164
84

102
91

147
140
102

59
24
27
39
51

120
24

9
5
8
9

15
3
9

0.15
0.22
0.29
0.23
0.30
0.02
0.38

Band Min

1
2
3
4
5
6
7

54
17
15

6
2

116
0

170
83

108
89

147
145
82

70
27
31
46
52

132
22

12
7

10
11
16
4
9

0.16
0.25
0.33
0.23
0.31
0.03
0.41

46
16
13
8
1

110
0

136
69
81
80

124
138
83

59
24
26
39
51

120
24

8
5
7
8

14
2
9

0.14
0.21
0.26
0.21
0.28
0.02
0.36

are considered an attractive spatial analytical tool (Goodchild and Mark, 1987; Lam and
De Cola, 1993). Despite the numerous applications in the last two decades, there are very
few direct references to the application of fractals in remote sensing (De Cola, 1989;
Lam, 1990). An expanded employment of fractals in remote sensing research is consid-
ered useful to a better understanding of the relation between surface variation and
spatial properties of remotely sensed data. This is especially true when one considers that
remote sensing is the main source of data that we can use for analyzing the spatial
dependence of surface and atmospheric phenomena at relatively large scales and over
large areas (Lovejoy and Schertzer, 1988, 1990; Davis et al., 1991).

The measurement of the fractal dimension, D of a spatial phenomenon is the first
step toward an understanding of spatial complexity. The higher the D, the more spatial
complexity is present. The fractal dimension of a point pattern can be any value between
0 and 1; a curve, between 1 and 2; and a surface, between 2 and 3. For example,
coastlines have dimension values typically approximately 1.2-1.3, and topographic sur-
faces around 2.2-2.3 (Mandelbrot, 1983). For spectral reflectance surfaces, such as those
reflected by Landsat-TM, the fractal dimensions are much higher, approximately 2.7-2.9
(Lam, 1990; Jaggi, Quattrochi, and Lam, 1993).

There are many methods to define and measure the fractal dimensions of curves and
surfaces. The following provides a brief description of how fractal dimension is calcu-
lated in lCAMS to assist interpretation of the results computed below. More detailed
descriptions of the major algorithms for geoscience applications can be found in Klinken-
berg and Goodchild (1992); Lam and De Cola (1993); Olsen, Ramsey, and Winn (1993);
and Klinkenberg (1994).

The key concept underlying fractals is self-similarity. Many curves and surfaces are
self-similar either strictly or statistically, meaning that the curve or surface is made up of
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copies of itself in a reduced scale. The number of copies (m) and the scale reduction
factor (r) can be used to determine the dimensionality of the curve or surface, where D =
-log(m)/log(r) (Falconer, 1990). Practically, the D value of a curve is estimated by mea-
suring the length of the curve using various step sizes, a procedure commonly called the
walking-divider method. The more irregular the curve, the greater increase in length as
step size decreases. Such an inverse relationship between total line length and step size
can be captured by a linear regression:

log(L) = C+ Blog(S),

where L is the line length, S is the step size, B is the slope of the regression, and C is the
constant. D can then be calculated by

D = 1 -B.

In addition to computing R2 for the regression, the scatter plot. illustrating the
relationship between step size and line length, known as the fractal plot, is often used as
a visual aid to determine whether the linear fit is good for all step sizes (Figure 4). Many
studies have shown that fractal plots of empirical curves are seldom linear, with many of
them demonstrating an obvious break (Mark and Aronson, 1984). This indicates that
real-world phenomena are seldom pure fractals and self-similarity rarely exists at all
scales. In such cases, specific fractal dimensions are defined only for specific scale ranges
at which the regression behaves linearly. Information on the fractal dimensions and their
associated ranges could be utilized to explore the issue of scale and resolution (Lam and
Quattrochi, 1992).

We implemented three fractal surface measurement methods in ICAMS: isarithm,
variogram, and triangular prism methods. The isarithm method was used to compute the
fractal dimensions of the images in this study. The isarithm method follows the walking-
divider logic by measuring the dimensions of individual isarithms derived from the
remote sensing surface (i.e., the iso-spectral reflectance lines). The D value is calculated
using

D=2-B.
The final D of the surface is the average of the isarithms that have R2 greater than 0.9.

This algorithm is slightly different from the one presented in Lam's 1990 study, which
averaged all isarithms regardless of the R2 values. In ICAMS, the user has a choice of
whether the calculation is based only along rows, columns, or both directions. Other user
input includes the isarithm interval and number of walks. Table 2 and the corresponding
Figure 3 compare the results of the two images. The number of walks were set to 6 (i.e., 1,

TABLE 2 .Fractal Dimension Values for the Original and F!e-sampled (101 x 101) Ima!~es

Original 1984Band ResamPled 1984 Original 1993 ResamPled 1993

1
2
3
4
5
6
7

2.949
2.930
2.920
2.763
2.701
2.239
2.839

2.904
2.913
2.910
2.743
2.641
2.522
2.785

2.810
2.796
2.806
2.705
2.727
2.306
2.767

2.842
2.841
2.811
2.656
2.718
2.560
2.744
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Figure 3 Plots of fractal dimension values.

Figure 4 Example output from applying the isarithmic module with the use of Band 1 of
the 1984 image.
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2,4,8, 16, 32 pixel intervals) and the isarithm interval to 2 for all calculations. Figure 4 is
an example output from applying the isarithm module on band 1 of the 1984 image.

A comparison between the coefficients of variation (Table 1) and the fractal dimen-
sion values (Table 2) for the original 1984 and 1993 images show a moderate correlation
between these two sets of numbers, with r's computed as 0.67 and 0.73 for the 1984 and
1993 images, respectively. For example, in the 1984 image, band 1 has the lowest coef-
ficient of variation (except band 6), with a value of 0.18, but the highest fractal dimen-
sion, with a value of 2.949. This demonstrates the utility of spatial indices: The coefficient
of variation is a non-spatial index summarizing the variations of the pixel values regard-
less of their locations, and the frfictal dimension, a spatial index, describes the spatial
complexity of the pixel values.

When the two indices are used together, a broad but basic impression of an image
can be formed, even without viewing the image. As such, these indices could be used as
part of the metadata for the image. For example, when an image has a high coefficient
of variation but a relatively low fractal dimension, such as band 5 of the 1984 image, the
surface would most likely exhibit a more spatially homogeneous pattern, sometimes with
a detectable trend (see Figure 5). On the contrary, if an image has a low coefficient of
variation but high fractal dimension, such as band 1, the surface is much more frag-

Figure 5 Three-dimensional display of band 1 (Top)
and band 5 (Bottom) of the 1984 image.
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mented and spatially varying. In addition to the traditional nonspatial statistics, this
result confirms the need to utilize spatial indices in visualizing and detecting environ-
mental patterns. The fractal indices used here have added information and served as a
quick tool in understanding the spatial dimension of the image.

Multiscale and Multi-Temporal Assessments

To characterize the effects of pixel resolution on the computed indices, the aggregation
module in ICAMS was applied with a 2 x 2 smoothing/averaging filter to aggregate the
original images (201 x 201 pixels) into resampled images with 101 x 101 pixels. The
resampled images were then applied to the fractal module using the same isarithm
method to re-compute their fractal dimensions. The resultant fractal dimension values
for the resampled images are listed in Table 2 and displayed in Figure 3. To enhance
comparison, the coefficients of variation of the resampled images were also computed
(see Table 1).

In a multi-scale setting, when comparing the spatial, or fractal dimension, with
non-spatial, or coefficient of variation, results show that coefficients of variation and the
fractal dimension values generally decrease with decreasing pixel resolution, except in
band 6. The correlation coefficients between the coefficient of variation and the fractal
dimension also decrease to a value close to 0.44 for both images. Band 6 exhibits a
distinct reverse trend, with much higher fractal dimensions resulted in the resampled
images. This can be easily explained because the original sensor resolution of band 6
that was about 120 m was artificially resampled to 25 m to conform with the rest of the
bands in Landsat- TM images, resulting in a much smoother and less spatially complex
surface. The 2 x 2 filter applied to this band increased the pixel resolution to 50 x 50 m
and in effect reduced the smoothness, thereby resulting in a higher fractal dimension.
This aspect of spatial information is not reflected by the coefficient of variation. Our
findings further suggest the need for more effective spatial indices in characterizing
remote sensing images.

Although the following was not tested here, if band 6 is further aggregated, the
fractal dimension will continue to increase until the resolution reaches to 120 m, and
thereafter, it may increase or decrease. The resolution at which the fractal dimension
yields the highest value can be considered as the scale of action, the "characteristic"
scale, or the optimal scale for analysis (Woodcock and Strahler, 1987). The use of fractal
dimension in characterizing scale has been suggested earlier (Lam and Quattrochi,
1992). With ICAMS, it is easier to perform such analysis for a variety of images.

In terms of spectral band (see Figure 3), the results from all four images, original
and resampled images of the two dates, seem to indicate three groups of spectral bands
based on their similarity in fractal dimension values. Group A contains bands 1, 2, and 3
and has the highest dimensions, whereas group B contains bands 4 and 5 and has lower
dimensions. Group C is band 7, which has a dimension value lying between groups A
and B. As expected, fractal dimension values of the thermal band (band 6) are signifi-
cantly lower, because of the smoother surfaces created from resampling from a coarser
sensor resolution to a finer resolution. This suggests that the fractal dimension values
computed for the spectral bands can be used as a potential guide to select certain bands
for further analysis. In this case, a band from each of the three groups could be picked,
instead of using all six bands, to reduce the complexity and time of analysis normally
required for examining all bands. We expect that this kind of application will become
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more significant and widespread when hyperspectral images such as AVIRIS (Airborne
Visible InfraRed Imaging Spectrometer), which has 224 spectral bands, become available.

When the two images from two different dates are compared, Table 2 and the
corresponding Figure 3 show that the 1993 image in general yields lower fractal dimen-
sions. Because very little change occurred in Lake Charles during the 9-year period,
differences in dimension values may be because of the smaller ranges of spectral reflec-
tance and lower maximum values for all bands, except band 6 (see Table 1), rather than
changes in land cover between the two dates. It is possible that normalization of the two
images may reduce the differences. It is not known whether the smaller spectral ranges
and lower maximum values were caused by a general deterioration of the sensor through
time or a phenomenon specific to this particular TM scene. Although the computed
fractal dimension values have adequately reflected the changes in spectral reflectance
values, our initial multi-temporal analysis has pointed to the main difficulty in land-cover
change detection, which is to distinguish real land-cover changes from spurious changes
due to ~ctors such as atmosphere, sensor, and sun angle. With ICAMS available, how-
ever, mqre images from different regions with similar time periods could be examined,
or different techniques, such as band ratio images, could be applied to analyze further
how the information on changes in index values can be used effectively in assessing the
true conditions of environment.

This example has pointed to the need for two analyses in the near future. First, as
noted earlier, accurate comparison of multi-date images requires more elaborate atmo-
spheric calibration and/or normalization of the images (jensen, 1996). Although the
impact of not normalizing the images may be minimized because ratios (NDVI), instead
of absolute numbers are used, in the future it would be useful to document the effects
of the various algorithms on calibrated/uncalibrated or normalized/un normalized imag-
ery. Second, the fractal module in ICAMS mainly focuses on the computation of global
indices for the entire study area. Local fractal measures, which may reflect changes in
local areas more effectively, should be further explored and implemented (De long and
Burrough, 1995; Mallat, 1989).

Delineation of Boundaries

To demonstrate the utility of lCAMS in delineating major boundaries, we applied the
land/water and vegetated/non-vegetated boundary delineation modules to the two images.
There are different methods to determine these boundaries, each with its own advan-
tages and disadvantages (Cherukuri, 1994). We implemented the NDVI method to delin-
eate these boundaries because of its reasonable accuracy, simplicity, and flexibility in
allowing the user to visualize and modify the results interactively.

In delineating the boundaries, the NDVI ratio must first be computed. NDVI is a
ratio between the red and infrared bands. For Landsat- TM images, NDVI is derived from

using:

NDVI = (band 4 -band 3) / (band 4 + band 3).

In general, clouds, snow, water, moist soil, and bright non-vegetated surfaces have NDVI
values less than zero, rock and dry bare soils have values close to zero, and positive NDVI
values generally indicate vegetated areas. For example, NDVI values for the contermi-
nous United States computed from the 1990 NOAA-AVHRR (Advanced Very High Res-
olution Radiometer) images have a range of 0.5 to 0.66 for vegetation (Lillesand and
Kiefer, 1994). To assist the user in determining the boundaries, we set -0.1 as the default
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threshold value to delineate land and water. Pixels with a value smaller than and equal
to -0.1 are classified as water, whereas pixels with a value greater than -0.1 are classified
as land. Similarly, a value of 0.25 was used as the default threshold value to delineate
vegetated and non-vegetated boundaries. As mentioned earlier, these threshold values
can be easily modified so that changes in boundarjies due to threshold value changes can
be visualized and evaluated. Furthermore, the output can be integrated with other data
layers for further analysis.

Figure 6 shows the land/water boundaries at the two time periods using the default
threshold values. Lake Charles, in the upper left corner, is clearly identified as water.
The 1984 image generally has more tiny pockets of water pixels than that of the 1993
image, which could indicate misclassification. However, by changing the threshold value
from the default of -0.1 to a value of -0.2, fewer water pixels were defined. In fact, the
redefined boundaries on the 1984 image now resemble closely the land/water bound-
aries derived from using the default value on the 1993 image. Detailed research on the
variability of NDVI as well as the accuracy of tht default threshold values in different
types of the images is out of the scope of the pre~ent article. The main point, however,
is that ICAMS can be used effectively to explore further these various issues.

Figure 7 compares the vegetated/non-vegetated boundaries defined by using the
same threshold value (0.25) for the two dates. The 1984 image shows slightly more
vegetated areas. The roads and buildings at the southeast corner of the image, which
were not in the 1984 image, were correctly identified as vegetated areas in 1984 and
nonvegetated areas in 1993.

CONCLUSIONS

UsJng two images for Lake Charles, Louisiana, we have demonstrated how ICAMS can be
applied to characterizing temporal differences ilil remote sensing images for environ-
mcntal assessment and measurement. We have demonstrated the need for spatial indi-
ces, such as fractal dimension, in revealing the spatial characteristics of the images. Using
fractal dimension with the traditional non-spatial statistics, such as coefficient of varia-
tion, a basic impression of the image can be foI'med even without viewing the image.
These simple indices could serve as part of the metadata of the image that could then be
used as a guide to search an image for rapid change detection and monitoring. This type
of library application will have tremendous potemtial when voluminous image data are
available during the NASA-EOS era. Moreover, fractal dimension values of individual
bands could be utilized as a guide for selecting illdividual or combinatiolls of ballds for
aIl~ysis. Such applicatioll will be especially useful to the analysis of hyperspectral images.

Through the multi-scale allalysis, we have shown that except for balld 6, fractal
dimension values generally decrease with decreasing pixel resolution. The reverse trend
shown ill balld 6 further illdicates that fractal illdices could be used, together with other
scale methods, to identify the "characteristic" or optimal scale of analysis. Scale allalysis
through ICAMS, therefore, call provide a quick assessment of the scale effects 011 the
derived illdices alld boulldaries, thus contributing to more accurate enviroIlmeIltal assess-
m~nt alld monitoring, and eventually to the deve1.opmellt of more sellsible ellvironmen-
tal or lalld-use policies for a regioll.

The developmeIlt of ICAMS is all evolving process, mealling that COIltiIlUOUS improve-
mtjIlt to the software will have to be made. Issues such as the reliability of the methods
aIl~ the usefumess of the illdices will have to be further examined. Furthermore, as
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Figure 6 Land/water boundaries using a
threshold value of -0.1 for the 1984 and 1993
images (top and middle) and a threshold
value of -0.2 for the 1984 image (bottom).
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Figure 7 Vegetated and non-vegetated regions defined by the
threshold value (0.25) for the 1984 (top) and 1993 (bottom)
images.
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hardware and software platforms, as well as data needs and data requirements change,
ICAMS will have to be modified. So it can be accessed through the Internet, future
improvements of ICAMS will include the development of the software on a stand-alone
platform using computer languages such as JAVA. By making this software available to a
wider community, we hope that improvement can be made in methods, tools, and
innovative applications. Through application by a diverse user group, ICAMS can evolve
from the exploratory to the operational stage as a technique for environmental assess-
ment and policy development.
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