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Abstract

The traditional spectral based classifiers are normally considered ineffective in digitally clas-

sifying urban land-use and land-cover classes from high-resolution remotely sensed data due

to the lack of consideration of images� spatial properties. To identify the complex arrange-

ments of urban features in high-resolution image data, the texture information contained in

a group of pixels needs to be considered. This paper discusses the concept of lacunarity and

the use of two lacunarity estimation methods (i.e., binary, gray scale) in texture analysis

and classification of urban images. Lacunarity has been introduced to characterize different

texture appearances, which may share the same fractal dimension value. Lacunarity measures

the distribution of gap sizes: low lacunarity geometric objects are homogeneous because all

gap sizes are the same, whereas high lacunarity objects are heterogeneous. Using different

moving windows (i.e., 13 · 13, 21 · 21, 29 · 29), the above lacunarity methods were employed

to classify urban features and to observe the effects of the size of moving windows in charac-

terizing urban texture features. Results from this study show that traditional spectral based

classification approach is inaccurate in classifying urban land categories from high-resolution

image data, with an accuracy of 55%, whereas lacunarity approaches can be used to improve

urban classification accuracy dramatically to 92%.
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1. Introduction

The conventional per-pixel image classification techniques have proven ineffective

due to the lack of consideration of images� spatial information in digitally classifying

the urban land-use and land-cover features in high-resolution images (Green, Cum-

mins, Wright, & Miles, 1993; Kiema & Bahr, 2001; Muller, 1997; Myint, Lam, & Ty-
ler, in press). It is obvious that the higher the spatial resolution of remotely sensed

data we employ, the higher the level of detailed objects and features in urban areas

(e.g., houses, trees, shrubs, driveways, grass, sidewalks, bare-soil, tar roads, cement

roads, etc.) can be detected. Hence, the spectral response from different land-cover

features from an urban environment as a whole in high-resolution images always ex-

hibit spatial complexity (Myint et al., in press).

Moreover, urban features are composed of spectrally different various materials

(e.g., plastic, metal, rubber, glass, cement, wood, etc.) concentrated in a small area
(Jensen & Cowen, 1999). The high frequency spatial appearance of urban land-cover

features is a major limitation in accurately classifying urban land-use and land-cover

classes in high-resolution image data (Myint, Lam, & Tyler, 2002). The classification

accuracy of images is the result of a trade-off between two main factors: class bound-

ary pixels and within-class variances (Metzger & Muller, 1996). Most common image

processing algorithms do not take the local structure or the spatial arrangement of

neighborhood pixels into consideration. To extract the heterogeneous nature of ur-

ban features in high-resolution images, the texture information contained in a group
of neighborhood pixels needs to be considered. Traditional spectral classification

algorithms use individual pixel values and ignore spatial information. This spatial

information is crucial in urban mapping when using high-resolution images, because

most of the urban classes contain a number of spectrally different features or objects

arranged in complex spatial forms (e.g., trees, grass, shrubs, driveways, sidewalks,

parking lots, cement roads, tar roads, houses, office buildings).

Another limiting factor for accurate urban classification is that it is extremely diffi-

cult to define suitable training sets formany categorieswithin urban environments. This
is due to variation in the spectral response of their component land-cover types (Barns-

ley, Barr, & Sadler, 1991). Therefore, the training statistics may exhibit very high stan-

darddeviation (Sadler, Barnsley,&Barr, 1991) and violate oneof the basic assumptions

of the widely used maximum-likelihood decision rule, namely, that the pixel values fol-

low a multi-variate normal distribution (Barnsley et al., 1991; Sadler et al., 1991).

Various attempts, including some new spatial techniques, were made to improve

the spectral analysis of remotely sensed data. Local variability in remotely sensed

data can be characterized by computing the statistics of a group of pixels, e.g., coef-
ficient of variance or autocovariance, or by the analysis of fractal relationships.

There have been some attempts to improve the spectral analysis of remotely sensed

data by using texture transforms in which some measure of variability in digital
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number (DN) values is estimated within local windows; e.g., contrast between neigh-

boring pixels, the standard deviation, or local variance. The coefficient of variance

also gives a measure of the total relative variation of pixel values in an area and

can be computed easily, but it gives no information about spatial patterns. One com-

monly used statistical procedure for interpreting texture uses image spatial co-occur-
rence matrix, which is also known as gray level co-occurrence matrix (GLCM)

(Haralick, Shanmugan, & Dinstein, 1973; Franklin, Hall, Moskal, Maudie, & Lav-

igne, 2000; Pesaresi, 2000). There are a number of texture measures, which could be

applied to spatial co-occurrence matrices for texture analysis (Peddle & Franklin,

1991). Variograms of remotely sensed measurements can also be used to quantita-

tively describe the spatial patterns. Emerson, Lam, and Quattrochi (1999) analyzed

the fractal dimension of satellite imagery using the Isarithm method and the spatial

auto-correlation using Moran�s I and Geary�s C to observe the differing spatial struc-
tures of the smooth and rough features in remote sensing images. Myint et al. (2002,

in press) used the technique of wavelet transform, a multi-scale textural method, to

detect urban features, and they were able to obtain much higher level of classification

accuracy. These various attempts of employing spatial techniques in urban land cov-

er classification have shown promising results, which demonstrates convincingly the

need for considering spatial information in urban land cover classification.
2. Lacunarity overview

The concept of lacunarity was originally developed by Mandelbrot (1983) to de-

scribe a property of fractals, and has since been extended to describe real data sets

that may or may not have fractal and multi-fractal distributions (Plotnick, Gardner,

Hargrove, Prestegaard, & Perlmutter, 1996). As such, understanding the develop-

ment of fractals will aid in understanding lacunarity.

Fractal dimensions may be viewed as a measure of complexity or heterogeneity of
spatial arrangements and physical processes in many fields of studies. There has been

growing interest in the application of fractal geometry to characterize spatial com-

plexity of geographic phenomena at multiple scales. The study of the relationship be-

tween physical processes and the effects of scale have become increasingly important

in geographic information science. Mandelbrot (1983) defined the term fractal as ‘‘a

set for which the Hausdorff Besicovitch dimension strictly exceeds the topological

dimension.’’ Fractals exemplify the idea of self-similarity, in which the spatial behav-

ior of a system, an object or a group of features is independent of scale (Burrough,
1993; Turcotte, 1997). An ideal fractal curve or surface has a constant dimension va-

lue over all scales. The variability of many natural phenomena is often irregular and

sometimes can be approximated by fractional Brownian motion (Mandelbrot, 1983).

Details on the description of the fractal dimension measurement techniques can be

observed in Jaggi, Quattrochi, and Lam (1993).

Some researchers anticipated that local fractal analysis of remotely sensed images

may reveal information on different land-use and land-cover categories better than

spectral based per-pixel classifier. A potential use of fractal dimension could be
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the analysis of texture information in image classification. Studies of image analysis

and texture classification have been conducted by scholars in different disciplines

over the past several decades with the expectation that different land-use and land-

cover classes could be characterized by fractal dimension values (De Cola, 1989;

De Jong & Burrough, 1995; Kaplan, 1999; Lam, 1990; Lam, Quattrochi, Qui, &
Zhao, 1998; Lovejoy & Schertzer, 1990). While these analyses demonstrate the po-

tential of fractal geometry in characterizing texture features in remotely sensed

images, it was also pointed out that fractal analyses of constructed sets do not pro-

vide a complete description of natural scaling phenomena and remotely sensed

images of the land-cover units are not true fractals (e.g., Burrough, 1989; De Jong

& Burrough, 1995; Dong, 2000; Klinkenberg & Goodchild, 1992; Mark & Aronson,

1984; Myint, 2003a; Myint et al., 2002; Roach & Fung, 1994; Xia, 1993).

In fact, Mandelbrot (1995) reports that fractal dimensions are very far from pro-
viding a complete characterization of a set�s texture. In other words, different fractal

sets may share the same fractal dimension values but have different appearances or

textures (Dong, 2000; Mandelbrot, 1983; Voss, 1986), just as different texture

appearances of classes may share the same variance or mean value. As an initial step

toward quantifying texture or spatial arrangements of features, Mandelbrot (1983)

introduced the term lacunarity (lacunar is Latin for gap) to characterize different tex-

ture appearances, which may have the same fractal dimension value. Different fractal

sets that have the same dimension value may be constructed, but they may look com-
pletely different because they have different lacunarity.

Lacunarity represents the distribution of gap sizes: low lacunarity geometric ob-

jects are homogeneous because all gap sizes are the same, whereas high lacunarity

objects are heterogeneous (Dong, 2000). In other words, Lacunarity measures the

deviation of a geometric structure from translational invariance, or gappiness of geo-

metric structure (Gefen, Meir, & Aharony, 1983). It is important to note that objects

that are homogeneous at a small scale can be heterogeneous at a larger scale (scale

here refers to both measurement or window size and areal extent). Therefore, lacu-
narity is a scale-dependent measure of spatial complexity or texture of a landscape

(Plotnick, Gardner, & O�Neill, 1993). Unlike most other landscapes indices and mea-

sures (Gustafson, 1998; Haines-Young & Chopping, 1996), the computed values of

lacunarity are not sensitive to map boundaries but are sensitive to scale.

Because remote sensing images of urban landscape are full of textures and hardly

self-similar, traditional spectral classification techniques, as well as fractals and other

spatial indices applied at a single scale level, may not be able to capture the gaps and

complexity of the landscape. Lacunarity is therefore applied in this study to examine
if it increases the accuracy in classifying urban land cover features from high-resolu-

tion remote sensing images.
3. Data and study area

IKONOS image data at 4 m spatial resolution with four bands: blue (0.45–

0.52 lm), green (0.52–0.60 lm), red (0.63–0.69 lm), and near infrared (0.76–
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0.90 lm) acquired over Norman, OK on March 20, 2000 was used for classifying ur-

ban land use and land cover categories in this study. A subset of IKONOS data

(1102 · 793 pixels) which contains the central part of the Norman metropolitan area

is shown in Fig. 1 with a locator map. We used the original 11 bit data instead of

converting it to 8 bit because it was anticipated that higher radiometric resolution
Fig. 1. (a) A subset of Norman, OK metropolitan area, displayed using bands 4 (0.76–0.90 lm) in red,

bands 3 (0.63–0.69 lm) in green, and bands 2 (0.52–0.60 lm) in blue; (b) location of the study area

(Norman city). (For interpretation of color in this figure legend the reader is referred to the web version of

this article.)
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would help us better identify texture features using lacunarity approaches. Examin-

ing the relationships between urban land-use land-cover classes associated with sur-

face vegetation, water availability, and associated temperature fluctuation within an

urban area is crucial for city planners and environmental officers. This information

will be useful to developing a better infrastructure management plan to avoid envi-
ronmental degradation: air pollution, noise pollution, traffic congestion, urban heat

island effect, chemical contamination, and soil loss due to improper urban develop-

ment and deforestation.

We considered residential areas with different tree crown closure percents as very

important categories for urban planning. Vegetation influences urban environmen-

tal conditions and energy fluxes by selective reflection and absorption of solar

radiation (Gallo et al., 1993) and by function of evapotranspiration (Owen, Carlson,

& Gillies, 1998). The presence and abundance of vegetation in urban areas has
long been recognized as a strong influence on energy demand and development of

the urban heat island (Huang, Akbari, Taha, & Rosenfeld, 1987; Oke, 1982).

Urban vegetation abundance may also influence air quality and human health

(Wagrowski & Hites, 1997) because trees make their own food from carbon diox-

ide in the atmosphere, sunlight, water, and a little amount of soil elements, and re-

lease oxygen in the process. They also provide surface area for sequestration of

particulate matter and ozone. The loss of trees in our urban areas intensifies the ur-

ban heat island effect due to the loss of shade and evaporation. In addition, we also
lose the principal absorbers of carbon dioxide and trappers of other pollutants as

well.

Hence, we attempted to identify two residential classes: one with less than 50%

vegetation and the other one with vegetation more than 50%. The other classes in-

cluded in this study were the only possible classes visually observed in the image over

the study area. Following Lo, Quatrochi, and Luvall (1997), six urban land-use and

land-cover features with different textural appearances were selected: single-family

houses with less than 50% tree canopy (residential-1—R1), single-family houses with
more than 50% tree canopy (residential-2—R2), commercial (C), woodland (F), agri-

culture (A), grassland (G), and water body (W). Bands 4 (near infrared), 3 (red), and

2 (green) were used as the original multi-spectral bands in this study.
4. Lacunarity approaches

Methods for calculating lacunarity were first introduced in general form by Man-
delbrot (1983) and several other algorithms of computing lacunarity have been devel-

oped (Allain & Cloitre, 1991; Dong, 2000; Gefen et al., 1983; Lin & Yang, 1986;

Voss, 1986). Allain and Cloitre (1991) initiated a conceptually straightforward and

computationally simple ‘‘gliding box’’ algorithm for calculating lacunarity and re-

ported that lacunarity appears to be a new tool for identifying the geometry of deter-

ministic and random sets. Since lacunarity measures the heterogeneity or degree of

contagion, a higher index value of lacunarity indicates a more heterogeneous feature

or a more complex spatial arrangement, and vice versa. Plotnick et al. (1996) empha-
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sized the concept and utilization of lacunarity for the characterization of spatial fea-

tures, which may not be fractals. The gliding box algorithm has been used for calcu-

lating lacunarity value of binary images as well as gray-scale images. This paper

evaluates both the binary and the gray-scale methods for computing lacunarity

and their accuracy in classifying urban features. The two algorithms are described
as follows.

4.1. Binary approach (gliding box method)

The gliding box of a specific size (r, length of a square box) is first placed at the

top left corner of an image in which each and every pixel is filled with either 1 or 0

(Allain & Cloitre, 1991; Plotnick et al., 1993). We generate binary images by convert-

ing each gray-scale image (each band) into four quartile images with value 1�s and
0�s. We basically sliced the image into five levels in order to get the four quartile

images. The location of each level can be computed using the following formula:

Ql ¼ ðnÞ=ð5=lÞ ð1Þ

where l (1, . . . , 4) = location level, n = number of observations.

The digital value at the computed location for the first, second, third, and fourth

levels were used as a threshold value to convert the original bands to binary images.
For example, the binary image for the first quartile will turn pixels which have values

above 75% of all pixels as 0�s and the rest as 1�s, and so on. If the first quartile break-

point has a DN value of 41, all digital values above 41 (25% of all pixels) will be con-

verted to zero and the rest will be assigned one. The transformed binary images of

band 3 (i.e., Q1, Q2, Q3, Q4) are shown in Fig. 2(a)–(d). Texture transformed images

of band 4, band 3, and band 2 derived from the lacunarity binary approach is here-

after called B4, B3, and B2.

Then the box mass ‘‘S’’, the number of occupied pixels (1�s), is computed. The
gliding box is systematically moved through the binary image one pixel at a time

and the box mass value is determined for each of the overlapping boxes. For lacu-

narity estimation of binary images, the gliding-box algorithm proposed by Allain

and Cloitre (1991) and extended by Plotnick et al. (1993) is used. For a given box

size r, the probability of box mass S is

P ðS; rÞ ¼ nðS; rÞ
NðrÞ ð2Þ

where n(S, r) is the number of gliding box size r with mass S, and N(r) is the total

number of boxes of size r. The first and second moment of this distribution, E(S)

and E(S2) are

EðSÞ ¼
X

SP ðS; rÞ ð3Þ

and

EðS2Þ ¼
X

S2P ðS; rÞ ð4Þ



Fig. 2. Transformed binary images of band 3: Q1 (a), Q2 (b), Q3 (c), and Q4 (d).
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Lacunarity for gliding box size r, K(r), is defined as

KðrÞ ¼ EðS2Þ
E2ðSÞ

ð5Þ

Based on a random binary image which has only two values; 0 for empty and 1 for

filled, it can be described as

EðS2Þ ¼ varðSÞ þ E2ðSÞ ð6Þ
Plotnick et al. (1993) extended Eq. (5) into

KðrÞ ¼ varðSÞ
E2ðSÞ

þ 1 ð7Þ

where E(S) is the mean and var(S) the variance of the number of occupied pixels per
box.

4.2. Example (binary spatial patterns and lacunarity)

Fig. 3 shows six 15 · 15 binary image patterns, with white pixels representing 1�s
and black pixels representing 0�s (gap). The lacunarity indices at different scales:



(b)(a)

(c) (d)

(e) (f)

Fig. 3. Binary images of six spatial features: (a) small gap pattern, (b) big gap pattern, (c) small checker

pattern, (d) big checker pattern, (e) small stripe pattern, (f) random pattern.
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r = 3, 5, 7, 9, and 11 are computed for each pattern (Fig. 4). It can be observed that

lacunarity measures the gappiness of scale dependent spatial features. For instance,

pattern (b)—big gap (Fig. 3) has the biggest gap than other patterns, and lacunarity

value is larger than that of others for almost all sizes since it contains many empty

boxes. On the other hand pattern (c)–small checker is a regular pattern (i.e., trans-

lationally invariant), and the lacunarity value is close to 1, because the number of

occupied pixels and empty pixels is constant at any location within a neighborhood.
However, pattern (d)–big checker is also a regular pattern, which is similar to pattern

(c) but at a coarser scale, does not give similar lacunarity value when using smaller

gliding box sizes (e.g., 3 · 3). The lacunarity value of both patterns became closer to

each other as the gliding box size increases. This situation is also true for pattern

(a)—small gap and pattern (b)—big gap (again this can be consider a similar feature

at a coarser scale), which shows significant differences in lacunarity values between
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Fig. 4. Lacunarity curves of the six spatial features shown in Fig. 3 using the binary method.

510 S.W. Myint, N. Lam / Comput., Environ. and Urban Systems 29 (2005) 501–523
the two patterns especially when using smaller gliding boxes. This apparently shows
the scale dependency of lacunarity measures. Lacunarity binary approach character-

izes pattern (c)—small checker, pattern (e)—small stripe, and pattern (f)—random

with different lacunarity values when using smaller gliding boxes (see Fig. 4), but

as gliding box sizes increase, their values become more similar. Hence, lacunarity

can be used to measure different spatial patterns, but as any spatial/textural mea-

sures, lacunarity is highly scale dependent.

4.3. Lacunarity of gray-scale images

Lacunarity is not confined to binary configurations, but can also be used with

gray scale data (Plotnick et al., 1996). Remotely sensed image data generally has

three-dimensional structure (i.e., x-coordinate, y-coordinate, z-value). As discussed

earlier, continuous image data can be transformed into four binary images by using

the formula and threshold value to obtain lacunarity values. However, four binary

images derived from one continuous image data are not true representative sets of

the original image texture. Some valuable information on the spatial arrangements
of objects or heterogeneity of complex texture features may be lost in the process

of converting gray-scale images to binary images. Therefore, it was anticipated that

lacunarity index value derived from original gray-scale images could provide better

accuracy in texture based image classification.

Voss (1986) proposed a probability approach to estimate the fractal dimension

and lacunarity of image intensity surface. The spatial arrangement of the points

determines P(m,L). P(m,L) is the probability that there are m intensity points within

a box size of L centered about an arbitrary point in an image. Intensity points are
referred to as the number points filled in a cube box. Hence, we have

XN

m¼1

P ðm; LÞ ¼ 1 ð8Þ
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where N is the number of possible points in the box of L. Suppose that the total

number of points in the image is M. If one overlays the image with boxes of side

L, then the number of boxes with m points inside the box is (M/m)P(m,L).

Hence

MðLÞ ¼
XN

m¼1

mPðm; LÞ ð9Þ

and

M2ðLÞ ¼ m
N

m¼1
m2P ðm; LÞ ð10Þ

Lacunarity can be computed from the same probability distribution P(m,L). Hence,

lacunarity K(L) is defined as

KðLÞ ¼ M2ðLÞ � ðMðLÞÞ2

ðMðLÞÞ2
ð11Þ

A worked example for computing a lacunarity value is illustrated in Fig. 5. Texture

transformed images of band 4, band 3, and band 2 derived from the gray-scale

approach will be hereafter called V4, V3, and V2. Example texture transformed image

of IKONOS band 3 using the gray-scale approach with 3 · 3 · 3 cube is shown in

Fig. 6.
4.4. Effects of box sizes on lacunarity measures

To evaluate the effectiveness of box sizes, linear discriminant analysis approach

was employed to identify four urban land use and land cover categories: agriculture,

commercial, woodland, and R1. We generated 10 samples (33 · 33) for each of the

above categories from the IKONOS image data and computed lacunarity index va-

lue for each sample using 3 · 3 · 3, 5 · 5 · 5, 7 · 7 · 7, 9 · 9 · 9, and 11 · 11 · 11

cube sizes. Sample images of the four categories are shown in Fig. 7. The computed

lacunarity values generated above were subject to discriminant analysis, and the re-

sults are shown in Table 1.
Discriminant analysis is useful for situations where we want to build a predictive

model of group membership based on observed characteristics of each case. The pro-

cedure generates a discriminant function (or, for more than two groups, a set of dis-

criminant functions) based on linear combinations of the predictor variables, which

provide the best discrimination between the groups. The functions are generated

from a sample of cases for which group membership is known; the functions can

then be applied to new cases with measurements for the predictor variables but

unknown group membership. The discriminant analysis was carried out to discrim-
inate between classes of urban land cover samples on the basis of their lacunarity

values (as predictor variables). Linear discriminant procedure was used to investigate

the relative discriminatory power of all variables and to determine classification



Fig. 5. A worked example to compute lacunarity value for a 5 · 5 image using 3 · 3 · 3 cube size with

gray-scale method: (a) a 5 · 5 original gray scale image, (b) intensity values for the first three rows, (c)

intensity values for the second three rows, (d) intensity values for the third three rows, (e) sum of all

intensity values in each cube box, (f) multiplication of total intensity value in each cube box and its

probability value [mP(m,L)], (g) multiplication of square of total intensity value in each cube box and its

probability value [m2P(m,L)].
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accuracies for different cube sizes (i.e., 3 · 3 · 3, 5 · 5 · 5, 7 · 7 · 7, 9 · 9 · 9,

and 11 · 11 · 11). In other words, the discriminant analysis was carried out to
discriminate between textural features of the selected samples of the four classes

on the basis of the lacunarity values using different cube sizes. This is an initial step

towards understanding how robust the lacunarity approach with regards to varying

cube sizes in discriminating samples (i.e., 33 · 33) of some selected classes. The most

important information that we obtained from this step was the determination of the

optimum cube size for real image classification.

Table 1 shows that box size of 3 · 3 · 3 was the most accurate (overall accuracy of

67.5%), and this box size will be used to compute the lacunarity values in the



Fig 5 (continued )

Fig. 6. Example lacunarity index image of band 3 using the gray-scale method (29 · 29 local window with

3 · 3 · 3 box).
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following analysis. However, the difference in accuracy among the selected box sizes

were not great, with the rest of the box sizes yielding slightly lower accuracies rang-

ing from 57.5% to 50%. It can also be observed that the commercial samples gave the

lowest user�s and producer�s accuracies for all cube sizes.



Fig. 7. Sample images of four land-use and land-cover classes displayed in band 3.

Table 1

Classification accuracy of lacunarity images derived from the gray-scale method using linear discriminant

analysis

Category Box size

3 · 3 · 3 5 · 5 · 5 7 · 7 · 7 9 · 9 · 9 11 · 11 · 11

Pro

Acc

Usr

Acc

Pro

Acc

Usr

Acc

Pro

Acc

Usr

Acc

Pro

Acc

Usr

Acc

Pro

Acc

Usr

Acc

A 100 83 90 82 90 82 90 82 80 73

C 30 43 20 25 10 14 10 17 20 25

F 80 60 60 55 70 58 70 54 60 46

R1 60 73 60 60 50 50 50 50 40 50

Ovr Acc 67.5 57.5 55.0 55.0 50.0

A = agriculture; C = commercial; F = woodland; R1 = residential-1; Pro Acc = producer�s accuracy; Usr

Acc = user�s accuracy; Ovr Acc = overall accuracy.
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5. Analysis

The computed values of both lacunarity approaches (i.e., lacunarity gray-scale,

lacunarity binary) were assigned to the center pixel of the local moving window

(W · W), and the window moves throughout the whole image. The gray-scale method

using different moving windows (i.e., 13 · 13, 21 · 21, 29 · 29) were employed to ob-
serve the nature and effectiveness of moving windows in characterizing urban texture

features. It is expected that a 13 · 13 local window may be large enough to cover tex-

ture features of all selected land-use and land-cover types in this study. In other words,

a distance of 13 pixels, in this case 52 m or 171 ft, may cover texture features of each

land-use and land-cover class especially for the complex land-use classes such as resi-

dential and commercial. Themost heterogeneous land use is residential category in this

study. This is because this land use class generally contains a number of spectrally dif-

ferent pixels or objects. For example, features such as roads, houses, grasses, trees, bare
soil, shrubs, driveways, swimming pools, and sidewalks, each of which may have a

completely different spectral response, but together they are considered as a residential

class. In other words, 52 · 52 m or 171 · 171 ft is large enough to cover a house, a side-

walk, a road, a driveway, a front yard, and a back yard to identify a residential class.

Window size apparently is not an issue for homogeneous classes. Criteria for the

selection of window size were based on the resolution and the nature of the classes

(homogeneity, size of the regions, characteristic scale, directionality, and spatial peri-
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odicity) to be identified. It should be noted that small window size (smaller than

13 · 13 for IKONOS image) may not cover sufficient spatial/texture information

to characterize land-use and land-cover types. On the other hand, if the window size

is too large, too much information from other land-use and land-cover features may

be included and hence the discrimination result might not be accurate. Therefore, it
is important to examine the appropriate window size for accurate discrimination of

urban features (Myint, 2003b; Myint et al., 2002). We demonstrated from Fig. 4 and

Table 1 that gliding box of 3 · 3 (for the binary approach) and 3 · 3 · 3 cube (for the

gray-scale approach) were more accurate than larger box sizes and cube sizes in dis-

criminating land use land cover features. Hence, we decided to use 3 · 3 gliding box

size for the binary approach and 3 · 3 · 3 cube size for the gray-scale approach with

the use of the selected window sizes (i.e., 13 · 13, 21 · 21, 29 · 29) to generate texture

transformed images.
We used the combination of multi-spectral bands and their texture transformed

images derived from all selected approaches. A supervised classification approach

with the use of maximum likelihood classifier was employed to identify the classes

in the study. The maximum likelihood decision rule is based on the probability

that a pixel belongs to a particular class. The basic equation assumes that these prob-

abilities are equal for all classes, and that the input data have normal distributions.

Twenty-three training samples comprising about equal number of samples for

each class (e.g., 3–4 training samples per class) were used in the classification for all
band combinations. To better evaluate and for comparison purpose, the traditional

multi-spectral band approach (i.e., C4, C3, C2) was first employed. This is just to

determine if traditional multi-spectral approach could provide satisfactory accuracy

for urban classification, and whether we need texture analysis approaches to provide

higher classification accuracy We then classified texture-transformed images of band

4, band 3, and band 2 derived from the lacunarity gray-scale approach, using a

29 · 29 local moving window.We did not include the original bands at this point since

we wanted to observe the effectiveness of texture-transformed images alone in urban
image classification. In our third analysis, we classified using different combinations

of textural and original bands and the same window size. We analyzed the combina-

tion of C4, C3, C2, V4, V3, and V2 with the expectation that the combination of all

original and transformed images could provide the highest accuracy. We also exam-

ined two other different alternatives: (1)C4,C3,C2, andV4, and (2)V4,V3,V2, andC4.

The idea was to determine if one texture transformed band added to the original three

bands and one original band added to the three texture transformed bands could pro-

vide satisfactory accuracy in image classification.
The best of all selected combinations, which gave the highest accuracy, was then

used to determine the effectiveness of the selected local windows (i.e., 13 · 13,

21 · 21, 29 · 29). It is often suggested that it would be preferable to choose training

sites, where possible, according to some stratified random sampling scheme. A min-

imum of 25 sample points per class using stratified random sampling technique was

employed in the accuracy assessment. The identified random sample points were dis-

played on the original satellite image data with the help of local area knowledge,

ground information collection, and existing land use maps of Norman to identify



User-defined Parameters
(1) Moving window size

(2) Gliding box size 

Determine the Optimum Box Size by
Testing Hypothetical Binary Images

Determine the Optimum Cube Size by Testing Lacunarity
Values of Small Samples of Selected LU LC Using  

Discriminant Analysis

User-defined Parameters
(1) Moving window size

(2) Cube size

Binary or Gray scale?

Convert to Binary

Binary Lacunarity
Calculation 

(Assign the value in the 
Center of the Moving Window)

Gray Scale Lacunarity
Calculation 

(Assign the value in the 
Center of the Moving Window)

Selection of 3-4 Training Samples Per Class

Classification of Different
Band Combinations Using Maximum

Likelihood Classifiers

Lacunarity Original
Bands

Binary

Gliding box

Gray Scale

Input Data

Lacunarity alone (or) 
Lacunarity + Originals

OriginalsLacunarity + 
Originals

Accuracy Assessment 
(About 25 samples per

class)

Start

End

Fig. 8. Flow chart for the research procedure and design.

516 S.W. Myint, N. Lam / Comput., Environ. and Urban Systems 29 (2005) 501–523



S.W. Myint, N. Lam / Comput., Environ. and Urban Systems 29 (2005) 501–523 517
the classes. In order to be consistent with all approaches in urban image analysis and

for comparison of classification accuracies, we used the same training samples, deter-

mined the same number of random samples for accuracy assessment, and employed

the maximum likelihood algorithm for all band combinations. Both lacunarity ap-

proaches for texture analysis and image classification were developed using C++
programming language. Fig. 8 shows a flow chart demonstrating a complete proce-

dure and research design of this study.
6. Results and discussion

It was found that traditional multi-spectral classification (i.e., band 4, band 3,

band 2) was inaccurate for urban image classification from high-resolution data,
since it produced 55% overall accuracy (Table 2). This is because spectral based clas-

sification approaches consider individual pixel value and ignore spatial arrangements

of neighborhood pixels. As the spatial resolution of remotely sensed data gets finer,

detailed objects and features in urban areas become more detectable (e.g., single fam-

ily vs. multi family homes, roads, trees, parking lots, and so on); therefore, the spec-

tral reflectance of an urban environment as a whole becomes more complex.

Moreover, urban features are composed of spectrally diverse materials concentrated

in a small area (e.g., plastic, metal, rubber, glass, cement, wood, and so on). In fact,
the high frequency spatial appearance or complex nature of urban features may be

the major limitation for using the spectral-based classification approaches in urban

land-use and land-cover classification. For example, roads, houses, grasses, trees,

bare soil, shrubs, swimming pools, driveway, and footpaths, each of which may have

a completely different spectral response but may need to be considered together as a

residential class. Hence, in order to identify urban land-use and land-cover classes we

need to consider the spatial arrangements of neighborhood features and objects or

texture and pattern, in addition to considering individual pixel values (Myint
et al., 2002, in press).

After adding texture-transformed image of band 4 (V4) to the original multi-spec-

tral bands (i.e., C4, C3, C2), the overall classification accuracy was increased from

55% to 84%. As mentioned earlier we also tested texture transformed images alone

generated from the lacunarity gray-scale method using a 29 · 29 local window. It

was found that the combination of texture transformed images alone was not so

effective since it gave only 68% overall accuracy. It can also be observed from Table

2 that one texture transformed image added to the original spectral bands
(C4 + C3 + C2 + V4) was more accurate than one original band added to the texture

transformed bands (V4 + V3 + V2 + C4). In other words, one additional texture

information added to the three original bands could provide better accuracy than

one original band added to the three texture transformed images. Combining all

of the original spectral bands and their texture-transformed images was the best ap-

proach since it achieved 92.0% accuracy.

We also used the best band combination approach to examine two other window

sizes (i.e., 13 · 13, 21 · 21). It was found that the 13 · 13 and 21 · 21 window sizes



Table 2

Classification accuracy of different original and texture transformed band combinations

Category Band combination

C4 + C3 + C2 V4 + V3 + V2 C4 + C3 + C2 + V4 V4 + V3 + V2 + C4 C4 + C3 + C2,

V4 + V3 + V2

Pro Acc Usr Acc Pro Acc Usr Acc Pro Acc Usr Acc Pro Acc Usr Acc Pro Acc Usr Acc

A 48 53 48 100 46 100 47 94 77 100

R1 43 57 72 77 91 78 86 67 89 89

R2 37 83 74 77 82 88 84 82 94 94

W 100 85 0 0 100 100 100 100 100 100

G 100 20 93 47 100 48 100 17 95 75

F 100 43 100 63 100 88 88 88 94 100

C 70 53 63 87 95 98 64 87 98 95

Ovr Acc 55.0 67.5 84.0 74.5 92.0

A = agriculture; R1 = residential-1; R2 = residential-2; W = water; G = grassland; F = woodland; C = commercial; Pro Acc = producer�s accuracy; Usr

Acc = user�s accuracy; Ovr Acc = overall accuracy.
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gave lower accuracies than the 29 · 29 window, 88.0% and 86.5%, respectively (Table

3). Even though the 29 · 29 window was found to be the best among all three

window sizes, it does not necessarily mean that this window size is the most effective

local window size in urban image classification, and further testing is needed to

examine how this window size will behave using other types of images. A much lar-
ger window may cover more texture information from other land-use and land-cover

features and could consequently lead to poor classification accuracy.

From Table 4, the second highest classification accuracy was produced by the

lacunarity-binary approach with an overall accuracy of 81%, which is below the min-

imum mapping accuracy of 85% required for most resource management applica-

tions (Townshend, 1981). In fact, the lacunarity gray-scale approach with a
Table 3

Classification accuracy of 13 · 13, 21 · 21, and 29 · 29 window sizes using the best band combination

(C4 + C3 + C2 + V4 + V3 + V2)

Category Local moving window size

13 · 13 21 · 21 29 · 29

Pro Acc Usr Acc Pro Acc Usr Acc Pro Acc Usr Acc

A 68 100 53 100 77 100

R1 85 74 95 93 89 89

R2 82 86 98 89 94 94

W 100 100 100 100 100 100

G 90 68 73 46 95 75

F 95 100 100 100 94 100

C 94 96 95 93 98 95

Ovr Acc 86.5 88.0 92.0

A = agriculture; R1 = residential-1; R2 = residential-2; W = water; G = grassland; F = woodland;

C = commercial; Pro Acc = producer�s accuracy; Usr Acc = user�s accuracy; Ovr Acc = overall accuracy.

Table 4

Classification accuracy of original bands, combination of original bands and texture transformed images

generated by the binary method, and combination of original bands and texture transformed images

generated by the gray-scale method

Category Original and spatial transformed images (29 · 29 windows)

Original bands Lacunarity (binary) Lacunarity (Voss)

Pro Acc Usr Acc Pro Acc Usr Acc Pro Acc Usr Acc

A 48 53 63 100 77 100

R1 43 57 73 73 89 89

R2 37 83 78 97 94 94

W 100 85 100 100 100 100

G 100 20 100 43 95 75

F 100 43 100 83 94 100

C 70 53 85 77 98 95

Ovr Acc 55.0 81.0 92.0

A = agriculture; R1 = residential-1; R2 = residential-2; W = water; G = grassland; F = woodland;

C = commercial; Pro Acc = producer�s accuracy; Usr Acc = user�s accuracy; Ovr Acc = overall accuracy.
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13 · 13 window produced even higher accuracy (86.5%) than the binary approach

with a 29 · 29 window. This may be due to the fact that much texture information

might have been lost when converting from the original image to four binary images

(i.e., Q1, Q2, Q3, Q4).
Fig. 9. Output maps: (a) traditional spectral approach; (b) lacunarity gray-scale. (Note: the same training

samples, the same classification approach, and the same class colors used.)—For interpretation of color in

this figure legend the reader is referred to the web version of this article.
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In examining the accuracy of land-cover types, it can be observed that there is

some confusion between agriculture and grassland. This is because they both are

spectrally and spatially related to similar feature classes. In general, they were the

two categories which made our classification accuracy lower. The only highly reliable

category found was water in this study. It reaches the highest user�s and producer�s
accuracy (100%) for all approaches, all window sizes, and all band combinations.

The output maps from the traditional multi-spectral approach and the lacunarity

gray-scale approach are shown in Fig. 9(a) and (b), respectively. As mentioned ear-

lier, we used the same training samples, same number of random points for accuracy

assessment, and same classification algorithm for all approaches. We also applied

same color scheme to each category in the output maps: yellow for agriculture, cyan

for commercial, green for woodland, black for water, purple for R1, red for R2.
7. Conclusions

This study shows that traditional spectral based classification approach alone

does not provide sufficient accuracy in classifying urban land categories from

high-resolution image data. Lacunarity as a texture measure can be used to improve

the classification accuracy dramatically. It should be noted, however, that the selec-

tion of local moving window size and gliding box size (issue of scale) plays an impor-
tant role in determining accuracy in characterizing spatial features for urban image

classification. Hence, future study should focus on more in-depth evaluation of win-

dow sizes and gliding box sizes and their effects on different types of land use land

cover classification. Other lacunarity approaches (Dong, 2000; Keller, Chen, &

Crownover, 1989) could also be explored and examined in future study. This ap-

proach can be adopted to improve any land use and land cover classification study

dealing with heterogeneous features or to discriminate categories, which are statisti-

cally similar but possessing different patterns and textures.
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