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Lacunarity is related to the spatial distribution of gap or hole sizes. For low lacunarity,

all gap sizes are the same and geometric objects are deemed homogeneous; con-

versely, for high lacunarity, gap sizes are variable and objects are therefore heteroge-

neous. Textures that are homogeneous at small scales can be quite heterogeneous at

large scales and vice versa, and hence, lacunarity can be considered a scale-depend-

ent measure of heterogeneity or texture. In this article, we use a lacunarity method

based on a differential box counting approach to identify urban land-use and land-

cover classes from satellite sensor data. Our methodology focuses on two different

gliding box methods to compute lacunarity values and demonstrate a mirror extension

approach for a local moving window. The extension approach overcomes, or at least

minimizes, the boundary problem. The results from our study suggest that the over-

lapping box approach is more effective than the skipping box approach, but that there

is no significant difference between window sizes. Our work represents a contribution

to not only advances in textural and spatial metrics as used in remote-sensing pattern

interpretation but also for broadening understanding of the computational geometry of

nonlinear shape models of which lacunarity is the reciprocal of fractal theory.

Introduction

Despite the new generation of very high spatial resolution sensor data (IKONOS

from 1999 and QuickBird from 2001), predicted improvements in classification

accuracy of urban land covers (and subsequent inference of urban land use) have

yet to materialize substantially (cf. Aplin 2003; Herold, Goldstein, and Clarke

2003). Much of the obstruction to quality information extraction is still due to the

traditional limitations of classifying image data representing urban areas: the high
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spatial arrangement of complex urban features and how to configure multispectral

responses from land cover features into organized urban land-use categories (Barr,

Barnsley, and Steel 2004). When launched, the desired objective of high spatial

resolution sensor data was for increased clarity of terrestrial features, especially

urban objects, by reducing per-pixel spectral heterogeneity and thereby improving

land cover identification. Clarity is certainly more evident in these finer-scale data

than those from preceding sensors, but paradoxically this greater level of detail is

also translated into many more unique per-pixel spectral combinations. For exam-

ple, the residential land-use category can now be defined from much wider spectral

variations, representing minute compositional mixtures of urban land covers, such

as roads, houses, grasses, trees, bare soil, shrubs, and swimming pools, each con-

ceivably a different residential land-use category. Following on, another limitation

for improved information extraction from high spatial resolution sensor data is the

reliance on techniques using traditional per-pixel spectral differentiation. To us this

seems counterintuitive and we would like to see more neighborhood-related meth-

ods, using textural and spatial parameters when dealing with fine-resolution image

data. Where traditional spectral approaches are designed to identify homogeneous

features regardless of shape, textural and spatial algorithms measure both the var-

iance within and the geometric configuration of whole urban objects, respectively

(see Wu et al. 2000; Tullis and Jensen 2003; Herold, Goldstein, and Clarke 2005).

As a contribution to the growing literature, we outline an object-based pattern rec-

ognition technique that accommodates the concept of lacunarity for characterizing

the textural properties of urban land cover (and therefore inferring land use) from

high spatial resolution image data. In doing so, we consolidate the utility of geo-

metric models not only for image data but for all discrete and textural spatial rep-

resentations (Zhao and Stough 2005). Indeed, the ability to characterize the shapes

of individual and groups of objects is a rapid area of research in computational

geometry and at the heart of the recent developments in object-based models in

many geographic information system algorithms (Medda, Nijkamp, and Rietveld

1998; Wentz 2000). Recall that remote sensor data are composed of multispectral

pixel vectors that represent geographical objects and their relative configuration.

We strongly adhere to the paradigm that geometric patterns, such as lacunarity, are

valuable precursors for functional processes; in our application, the texture and

spatial orientation of land-cover patterns derived from remote sensor data are both

forerunners for analyzing land-use juxtaposition and dynamic urban processes.

Lacunarity approach

The lacunarity of an object is the counterpart of its fractal dimension. Lacunarity

methods for urban analysis, and indeed many other applications in geospatial re-

search, have already been reported by a number of researchers (Keller, Chen, and

Crownover 1989; Henebry and Kux 1995; Dong 2000a, b; Myint and Lam 2005a).

Essentially, lacunarity is related to the spatial distribution of gap or hole sizes. For
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low-lacunarity measurements, all gap sizes are the same and geometric objects are

deemed homogeneous; conversely, for high-lacunarity gap sizes are variable and

objects are therefore heterogeneous. In other words, the variance or texture of gap

sizes within the spatial delineation of geometric objects determines the level of

lacunarity. Of course, textures that are homogeneous at small scales can be quite

heterogeneous at large scales, and vice versa; therefore, lacunarity can be con-

sidered a scale-dependent measure of texture (Gefen, Meir, and Aharony 1983).

Methods for calculating the lacunarity of objects were first given, in general terms,

by Mandelbrot (1983) and were later implemented by various computer algorithms

(see Lin and Yang 1986; Voss 1986; Allain and Cloitre 1991; Dong 2000a, b). Work

by Myint and Lam (2005b) developed two modified lacunarity algorithms: the bi-

nary approach, which was first introduced by Plotnick, Gardner, and O’Neill

(1993), and a gray-scale routine, initially devised by Voss (1986) and used to test

the effectiveness of lacunarity on high spatial resolution sensor data. This same

desire to extract urban objects from fine-scale sensor data also forms the basis of

this study, where we examine modifications to a differential box counting algo-

rithm, first formulated by Dong (2000b).

Our study will also introduce two different gliding box approaches. The first

uses overlapping boxes, in which the gliding box moves to a pixel next to the pre-

vious position (Fig. 1c), and the second uses skipping boxes, in which the gliding

box skips the entire coverage of the previous box before moving to the next position

(Fig. 1b). As a background, and according to the gliding box algorithm proposed by

Allain and Cloitre (1991), n(M,r) can be defined as the number of gliding boxes with

radius r and mass M. The probability function Q(M,r) is obtained by dividing n(M,r)

by the total number of boxes, so that lacunarity at scale r is defined as

LðrÞ ¼
P

M M2QðM; rÞ
P

M MQðM; rÞ
� �2 ð1Þ

A cube of size r � r � r (r 5 2, 3, 4, . . .) is placed over the upper left corner of an

image window of size W �W. For each r � r gliding box, the minimum and max-

imum pixel values in the gliding box are allowed to fall in box number u and v,

respectively. Then, the relative height of the column is

nrði; jÞ ¼ v � u � 1 ð2Þ

where i and j are image coordinates. Although this calculation gives an accurate

height of the column, if the minimum and maximum pixel values fall in the same

box, the column becomes a negative one, not a problem if using a positive one. We

believe this is adequate as the computed value represents the relative height, so

when the r � r gliding box moves throughout the W �W image window, the

following is possible:

Mr ¼
X

i;j

nrði; jÞ ð3Þ
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The mass M in equation (1) is then replaced by Mr to obtain lacunarity L(r) in

the W �W window (Dong 2000a).

The computations of lacunarity values are given by worked examples in Fig. 2

where the overlapping box method is demonstrated by a 4 � 4 image or local

window (Figs. 2a–e), while a 6 � 6 image is used to illustrate the skipping box

method (Figs. 2f–j). The 3 � 3 gliding box used in both is the base of the cube box

(3 � 3 � 3 as shown in Fig. 1) and is always an odd number to allow the computed

value to be assigned to a central cell. A column with more than one cube box may

be required to cover the maximum image intensity values by stacking cube boxes

(a)

(b)

(c)

Figure 1. (a) Gliding box with adjacent box. (b) Gliding box and adjacent box in the skipping

box algorithm. (c) Gliding box and adjacent box in the overlapping box algorithm.
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on top of each other. The number of cube boxes required to cover the image in-

tensity surface depends on the pixel values in the 3 � 3 gliding box. Figure 3 il-

lustrates image intensity values in three dimensions, requiring two cube boxes to be

stacked on top of each other to cover the entire image intensity column. Intensity

values using the example images in Fig. 2 (4 � 4 and 6 � 6 images) are calculated

at the first, second, third, and fourth positions of the cube boxes (overlapping and

skipping boxes). For example, in Figs. 2b and g the minimum and maximum pixel

values are 7 and 18, respectively, at the first position of the gliding box. With a cube

box of 3 � 3 � 3, these values fall in box number 3 (value of u) and 6 (value of v),
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Figure 2. Worked example to compute lacunarity values for a 4 � 4 image (for an overlap-

ping box) and a 6 � 6 image (for a skipping box) using a 3 � 3 � 3 cube size or a 3 � 3

gliding box (gray shade): (a) 4 � 4 image, (b) first gliding box position within the 4 � 4 im-

age, (c) second gliding box position within the 4 � 4 image, (d) third gliding box position

within the 4 � 4 image, (e) fourth gliding box position within the 4 � 4 image, (f) 6 � 6

image, (g) first gliding box position within the 6 � 6 image, (h) second gliding box position

within the 6 � 6 image, (i) third gliding box position within the 6 � 6 image, and (j) fourth

gliding box position within the 6 � 6 image.
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respectively. The relative height of the column is then 6� 311 5 4 (u� v11). In the

same way, we can compute the required parameters for all positions of the cube

boxes as follows: For the second position of the gliding box, u 5 7, v 5 1 (the rel-

ative height of the column is (u� v11) or 7� 111 5 7). For the third position,

u 5 6; v 5 5 (the relative height is 6� 511 5 2). For the fourth, u 5 8, v 5 1 (the

relative height is 8� 111 5 8). Finally, the lacunarity value of the example image is
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Figure 2. Continued.

Geographical Analysis

376



calculated as

LðrÞ ¼
P

M M2QðM; rÞ
P

M MQðM; rÞ
� �2

¼½ð4� 4Þ � ð1=4Þ� þ ½ð7� 7Þ � ð1=4Þ� þ ½ð2� 2Þ � ð1=4Þ�
þ ½ð8� 8Þ � ð1=4Þ�=½ð4=4Þ þ ð7=4Þ þ ð2=4Þ þ ð8=4Þ�2 ¼ 1:20635

Research design

Data and study area

We applied our technique to an IKONOS sensor image data of 4 m spatial reso-

lution across all four of its channels: blue (0.45–0.52 mm), green (0.52–0.60 mm),

red (0.63–0.69 mm), and near infrared (0.76–0.90 mm). The image represents the

settlement of Norman, Oklahoma and was captured on March 20, 2000. Only a

subset of this IKONOS sensor image (614 � 447 pixels) covering a central portion

of the metropolitan area (Fig. 4) was used to identify three land cover/land-use

classes: grassland, commercial, and residential—all three capable of being

delineated using manual interpretation.

Local window

At the onset, it is important to note that the characteristic scale (Lark 1996) is an

important parameter to be considered for effective identification of land covers with

different texture appearances. A characteristic scale is the minimum distance be-

tween two pixels that completely covers a texture. In our study, anything between
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Figure 3. (a) Simple image intensity values in three dimensions. (b) Two cube boxes

(3 � 3 � 3) stacked on top of each other to cover the entire image intensity columns.
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21 pixels (84 m) and 27 pixels (108 m) was considered large enough to cover tex-

tures that represent all of the classes, especially complex residential and commer-

cial land uses derived from the IKONOS multispectral image. Hence, 9 � 9,

15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39 local window sizes were used

to determine the optimum scale with which to identify land-cover classes. From a

previous study (Myint and Lam 2005b) that was based on a lacunarity approach

designed by Voss (1986), we demonstrated that smaller gliding boxes have more

discriminatory power than larger gliding boxes. And as a result, a small 3 � 3 � 3

gliding box is used in this study and is the very basis for the chosen window sizes

dimensionalized by a factor of 3. Hypothetically, a window size should be small

enough to cover only single land-cover features but large enough to guarantee

sufficient spatial/textural information for the characterization of land-cover types. If

the local moving window size is w � w, and as the window moves throughout the

image the lacunarity value is assigned to the center (at the [(w11)/2]th pixel po-

sition), then (w� 1)/2 pixels are lost from the top, bottom, left, and right side of the

image. In that case, a mirror extension of (w� 1)/2 pixels around the image is nec-

essary before beginning computation. What happens is that the algorithm is de-

signed to extend automatically the image with (w� 1)/2 pixels all around if the

selected window size is w. As such, the size of an extended image is the original

image size1(window size� 1). Mirror extension is designed to copy the second-last

row or column and add the next-to-last row and column, respectively. Then copy

the third-last row and column and add the next-to-the-second-last row and column,

Figure 4. IKONOS image of the study area displaying channel 3 (0.63–0.69mm) in gray

scale.
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respectively, and so on depending on the number of rows and columns required for

the extension. This mirror extension procedure is demonstrated by a hypothetical

image in Fig. 5 and is considered more effective than other widely used methods,

including those adding zero, one, last row/column data, or the mean values in the

extended areas. Our favored approach is also more accurate than other interpola-

tion methods (e.g., kriging, inverse distance) because it does not alter any values in

the original image. By using the mirror extension, we obtain the same mean and

standard deviation statistics within the extended area. Moreover, important texture

properties, such as characteristic scale, spatial periodicity, and directionality of

objects/features, in the extended areas and the original areas in the local window

are the same, or at least similar (Lark 1996; Myint 2003). It should also be noted that

this extension is performed only during the computational process where the output

image has the same number of rows and columns as the original image. An ex-

ample, illustrating the original image, extended image, local moving window, and

(a) 

(b) 

1
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1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 1
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(d) 

Figure 5. A hypothetical image in gray scale display and its corresponding brightness values

are shown in (a) and (c). The extended images of the above hypothetical images using mirror

extension are shown in (b) and (d), respectively.
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assignment of lacunarity value in the local window is presented in Fig. 6. The

computed values of the modified lacunarity approach were assigned to the center

pixel of the local moving window (w � w) as the window moves through the entire

image.

Training samples

With knowledge of the local area and ground checks, training samples were

carefully selected to represent the three land-cover/land-use classes: grassland,

Local window 
(e.g., w = 25)

moves throughout 
the image 

(first position)

Lacunarity value assigned  
at the center pixel 

[(w+1)/ 2]th position 

Mirror extension (w -1) / 2

Original image length 

Original 
image 
width 

Local window 
(last position)

Mirror extension (w-1)/2

Extended image 

Figure 6. Example showing image extension, moving window and lacunarity value assign-

ment procedure.
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commercial, and residential—descriptive statistics of their brightness values are

shown in Table 1. It is generally suggested that the standard deviation of training

data should be around, or even less than, 10% of the mean coefficient of variation

to guarantee homogeneous distributions vital to traditional spectral-based classifi-

ers. Compared with the standard deviation, which is expressed in absolute terms,

the coefficient of variation is considered a more appropriate measure for the com-

parison of data distributions across variables. Again from Table 1, the standard de-

viation of the commercial and residential land uses is 37.1% and 34.3% of their

respective mean values. At this stage, it is important to remember that groups of

adjacent pixels generally exhibit positive autocorrelation, or at least display a high

probability of having similar digital numbers (cf. Gong and Howarth 1992; Emer-

son, Lam, and Quattrochi 1999; Warner, Steinmaus, and Foote 1999; Jensen 2004).

In our calculations, the grassland (Moran’s I 5 0.49; Geary’s C 5 0.43) sample ex-

hibited a positive autocorrelation, whereas the commercial (Moran’s I 5 0.16;

Geary’s C 5 0.83) and residential (Moran’s I 5 0.09; Geary’s C 5 0.91) samples

displayed random spatial arrangements with no patterns of clustering or homoge-

neity (Table 1).

Band combinations and classifications

Finally, lacunarity algorithms, based on both skipping and overlapping boxes, were

applied to transform bands 2, 3, and 4 of the IKONOS image. In addition, a number

of layer stacks involving both lacunarity-transformed bands and original bands

were generated in the following combinations:

� three original bands,

� three lacunarity-transformed bands,

� combination of three original bands and three lacunarity-transformed bands,

� combination of three original and one lacunarity-transformed band, and

� combination of two original bands and two lacunarity-transformed bands.

All window sizes were applied to stacks of three original bands and three la-

cunarity-transformed bands, as well as the combination of three original bands and

one lacunarity-transformed band. Regarding the three separate lacunarity-trans-

formed bands, only the 27 � 27 window was used, primarily to observe whether

Table 1 Descriptive Statistics and Spatial Autocorrelation of the Training Samples

Training

sample

Minimum Maximum Mean Standard

deviation

Coefficient

of variation

(%)

Spatial

autocorrelation

Moran’s I Geary’s C

Grassland 185 309 220.48 19.97 9.06 0.49 0.43

Commercial 131 767 423.17 157.05 37.11 0.16 0.83

Residential 135 683 373.44 128.18 34.32 0.09 0.91
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satisfactory accuracy levels were attained without the original bands. In the case of

the combination of the three original bands and one lacunarity-transformed band,

the lacunarity-transformed band 3 was used to test whether one lacunarity-trans-

formed band could improve the accuracy of the three original bands. Experiments

were conducted with all window sizes using lacunarity-transformed band 3, as well

as testing lacunarity-transformed band 4 with the original bands using the 27 � 27

window for significant differences between lacunarity-transformed band 3 and la-

cunarity-transformed band 4. In the case of the combination of two original bands

and two lacunarity-transformed bands, band 3 and band 4 were tested using the

27 � 27 window. All code for the modified lacunarity approaches was written in

the C11 programming language.

Reference map for error matrix

When examining the effectiveness of different classification algorithms, ‘‘wall-to-

wall’’ comparisons were used by checking every pixel in the image. The selected

area covered 274,458 pixels (447 � 614) representing all three urban classes:

grassland, commercial, and residential. Reference classes were collected by man-

ual interpretation, using sound local area knowledge and a thorough ground

survey, and then digitally delineated with negligible positional error.

Results and discussion

Overall accuracies produced by the combination of three original bands and three

lacunarity-transformed bands using the overlapping box algorithm based on the

9 � 9, 15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39 window sizes were

59.36%, 61.72%, 61.86%, 61.01%, 59.94%, and 61.65%, respectively. They dem-

onstrate that overall accuracy increases slightly with expanding window sizes, de-

spite a slight decline when using the 33 � 33 window (Table 2), and it is fairly

reasonable to suggest that the 15 � 15 and 21 � 21 window sizes are effective for

this analysis. However, overall accuracies produced by the combination of three

original bands and three lacunarity-transformed bands using the skipping box al-

gorithm based on the 9 � 9, 15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39

window sizes were 58.31%, 59.29%, 57.40%, 56.41%, 56.92%, and 58.31%, re-

spectively (Table 3). Different window sizes produced inconsistent overall accura-

cies, and hence it is difficult to determine the optimal window size. In comparison,

the overlapping box algorithm outperforms the skipping box algorithm, and

because the overall accuracy of the original bands is 58.38% (Table 4), it can be

concluded that lacunarity using the overlapping box algorithm improved the clas-

sification accuracy of the original bands. However, we feel that accuracy was not

significantly improved.

Overall accuracies produced by the combination of three original bands and

one lacunarity-transformed band (band 3) using the overlapping box algorithm

based on the 9 � 9, 15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39 window

sizes were 58.49%, 60.74%, 60.94%, 60.43%, 60.29%, and 61.35%, respectively
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(Table 5). From this, we can deduce that there is only a slight difference between

adding the one lacunarity-transformed band (band 3) to the original bands and

adding three lacunarity-transformed bands to the original bands. However, it was

Table 2 Overall Accuracies Produced by the Combination of Three Original Bands and

Three Lacunarity-Transformed Bands for Overlapping Box Algorithm Using (a) 9 � 9,

(b) 15 � 15, (c) 21 � 21, (d) 27 � 27, (e) 33 � 33, and (f) 39 � 39 Window Sizes

Reference data Total

points

Accuracy

G C R Producer’s

accuracy (%)

User’s

accuracy

(%)

(a) 9 � 9 window

G 27,180 1141 8663 36,984 42 73

C 2724 57,878 38,761 99,363 68 58

R 34,615 25,633 77,863 138,111 62 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 59.36 k5 0.35

(b) 15 � 15 window

G 27,693 497 3097 31,287 43 89

C 4028 57,512 38,005 99,545 68 58

R 32,798 26,643 84,185 143,626 67 59

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 61.72 k5 0.38

(c) 21 � 21 window

G 24,364 192 522 25,078 38 97

C 3805 51,232 30,569 85,606 61 60

R 36,350 33,228 94,196 163,774 75 58

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 61.86 k5 0.37

(d) 27 � 27 window

G 18,409 2 56 18,467 29 100

C 2874 45,424 21,618 69,916 54 65

R 43,236 39,226 103,613 186,075 83 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 61.01 k5 0.35

(e) 33 � 33 window

G 17,314 0 0 17,314 27 100

C 2956 39,776 17,855 60,587 47 66

R 44,249 44,876 107,432 196,557 86 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 59.94 k5 0.32

(f) 39 � 39 window

G 20,927 0 4 20,931 32 100

C 4286 39,939 16,958 61,183 47 65

R 39,306 44,713 108,325 192,344 86 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 61.65 k5 0.35

G, grasslands; C, commercial; R, residential.
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also found that the combination of three original bands and three lacunarity-trans-

formed bands produced higher accuracies. Overall accuracies generated by the

combination of three original bands and one lacunarity-transformed band (band 4)

Table 3 Overall Accuracies Produced by the Combination of Three Original Bands and

Three Lacunarity-Transformed Bands for Skipping Box Algorithm Using (a) 9 � 9,

(b) 15 � 15, (c) 21 � 21, (d) 27 � 27, (e) 33 � 33, and (f) 39 � 39 Window Sizes

Reference Data Total

points

Accuracy

G C R Producer’s

accuracy (%)

User’s

accuracy

(%)

(a) 9 � 9 window

G 26,390 673 4057 31,120 41 85

C 2035 51,120 35,964 89,119 60 57

R 36,094 32,859 85,266 154,219 68 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 59.31 k5 0.34

(b) 15 � 15 window

G 20,886 173 500 21,559 32 97

C 1603 49,967 32,910 84,480 59 59

R 42,030 34,512 91,877 168,419 73 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 59.29 k5 0.33

(c) 21 � 21 window

G 16,213 9 22 16,244 25 100

C 1274 41,254 25,197 67,725 49 61

R 47,032 43,389 100,068 190,489 80 53

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 57.40 k5 0.28

(d) 27 � 27 window

G 13,329 0 1 13,330 21 100

C 1286 35,450 19,240 55,976 42 63

R 49,904 49,202 106,046 205,152 85 52

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 56.41 k5 0.25

(e) 33 � 33 window

G 14,427 0 0 14,427 22 100

C 1468 33,344 16,836 51,648 39 65

R 48,624 51,308 108,451 208,383 87 52

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 56.92 k5 0.26

(f) 39 � 39 window

G 18,974 0 4 18,978 29 100

C 2127 32,351 16,577 51,055 38 63

R 43,418 52,301 108,706 204,425 87 53

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.31 k5 0.29

G, grasslands; C, commercial; R, residential.
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using the overlapping box algorithm for the 15 � 15 and 27 � 27 window sizes

(58.14% and 58.99%, respectively) were lower (Table 4) than the combination with

lacunarity-transformed band 3. Overall accuracies produced by the combination of

three original bands and one lacunarity-transformed band (band 3) for the skipping

box algorithm using the 9 � 9, 15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39

window sizes were 58.87%, 60.07%, 58.60%, 57.37%, 56.93%, and 57.69%,

Table 4 Overall Accuracies Produced by (a) Three Original Bands, (b) Three Original Bands

and One Lacunarity-Transformed Band (i.e., Band 4) Using the Overlapping Box Algorithm

for 15 � 15 Window Size, (c) Three Original Bands and One Lacunarity-Transformed Band

(i.e., Band 4) Using the Overlapping Box Algorithm for 27 � 27 Window Size, (d) Lacuna-

rity-Transformed Bands Alone, (e) Two Original Bands (i.e., Bands 3 and 4) and Two Lacu-

narity-Transformed Bands (i.e., Bands 3 and 4) for the Overlapping Box Algorithm Using

27 � 27 Local Window, and (f) the Expert System Approach

Reference Data Total points Accuracy

G C R Producer’s

accuracy (%)

User’s

accuracy

(%)

(a) 3 original bands

G 25,865 1003 8433 35,301 40 73

C 2876 60,208 42,702 105,786 71 57

R 35,778 23,441 74,152 133,371 59 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.38 k5 0.34

(b) 15 � 15 window, 3 original bands and lacunarity-transformed band 4

G 26,550 1426 10,947 38,923 41 68

C 2634 59,464 40,782 102,880 70 58

R 35,335 23,762 73,558 132,655 59 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.14 k5 0.34

(c) 27 � 27 window, 3 original bands and lacunarity-transformed band 4

G 21,449 641 5883 27,973 33 77

C 2811 58,727 37,666 99,204 69 59

R 40,259 25,284 81,738 147,281 65 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.99 k5 0.34

(d) 27 � 27 window, Lacunarity-transformed bands alone

G 26,374 1444 11,232 39,050 41 68

C 2670 59,788 41,569 104,027 71 57

R 35,475 23,420 72,486 131,381 58 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 57.80 k5 0.33

(e) 27 � 27 window, Original bands 3 and 4 and lacunarity-transformed bands 3 and 4

G 18,002 17 94 18,113 28 99

C 1560 45,299 20,651 67,510 54 67

R 44,957 39,336 104,542 188,835 83 55

G, grasslands; C, commercial; R, residential.
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respectively (Table 6). The results show that there is no difference between adding

three lacunarity-transformed bands to the original bands or adding one lacunarity-

transformed band (band 3) to the original bands. This may be mainly because the

Table 5 Overall Accuracies Produced by the Combination of Three Original Bands and One

Lacunarity-Transformed Band (i.e., Band 3) for the Overlapping Box Algorithm Using 9 � 9,

15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39 Window Sizes

Reference Data Total points Accuracy

G C R Producer’s

accuracy

(%)

User’s

accuracy

(%)

(a) 9 � 9 window

G 26,864 1319 10,193 38,376 42 70

C 2700 59,249 40,691 102,640 70 58

R 34,955 24,084 74,403 133,442 59 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.48 k5 0.34

(b) 15 � 15 window

G 26,994 638 5202 32,834 42 82

C 3107 59,045 39,431 101,583 70 58

R 34,418 24,969 80,654 140,041 64 58

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 60.74 k5 0.37

(c) 21 � 21 window

G 23,449 214 706 24,369 36 96

C 1967 48,587 29,370 79,924 57 61

R 39,103 35,851 95,211 170,165 76 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 60.94 k5 0.36

(d) 27 � 27 window

G 17,453 6 55 17,514 27 100

C 1087 42,165 19,000 62,252 50 68

R 45,979 42,481 106,232 194,692 85 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 60.43 k5 0.33

(e) 33 � 33 window

G 15,980 0 0 15,980 25 100

C 1230 39,977 15,768 56,975 47 70

R 47,309 44,675 109,519 201,503 87 54

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 60.29 k5 0.32

(f) 39 � 39 window

G 20,085 0 0 20,085 31 100

C 1639 38,760 15,763 56,162 46 69

R 42,795 45,892 109,524 198,211 87 55

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 61.35 k5 0.34

G, grasslands; C, commercial; R, residential.
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skipping box algorithm is not particularly effective in identifying texture features

from image data. As mentioned earlier, we also tested the lacunarity-transformed

bands generated by the overlapping box approach, individually. These texture

Table 6 Overall Accuracies Produced by the Combination of Three Original Bands and One

Lacunarity-Transformed Band (i.e., Band 3) for the Skipping Box Algorithm Using 9 � 9,

15 � 15, 21 � 21, 27 � 27, 33 � 33, and 39 � 39 Window Sizes

Reference data Total points Accuracy

G C R Producer’s

accuracy

(%)

User’s

accuracy

(%)

(a) 9 � 9 window

G 26,892 1042 7907 35,841 42% 75

C 2343 56,656 39,357 98,356 67 58

R 35,284 26,954 78,023 140,261 62 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 58.87 k5 0.34

(b) 15 � 15 window

G 22,239 225 1301 23,765 34 94

C 2193 57,198 38,560 97,951 68 58

R 40,087 27,229 85,426 152,742 68 56

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 60.07 k5 0.35

(c) 21 � 21 window

G 18,302 26 180 18,508 28 99

C 1703 49,465 32,039 83,207 58 59

R 44,514 35,161 93,068 172,743 74 54

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 59.60 k5 0.31

(d) 27 � 27 window

G 15,747 3 36 15,786 24 100

C 1459 41,909 25,451 68,819 50 61

R 47,313 42,740 99,800 189,853 80 53

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 57.37 k5 0.28

(e) 33 � 33 window

G 15,299 0 14 15,313 24 100

C 1531 37,780 22,100 61,411 45 62

R 47,689 46,872 103,173 197,734 82 52

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 56.93 k5 0.27

(f) 39 � 39 window

G 17,942 0 18 17,960 28 100

C 1716 35,345 20,226 57,287 42 62

R 44,861 49,307 105,043 199,211 84 53

Total points 64,519 84,652 125,287 274,458 Overall accuracy 5 57.69 k5 0.28

G, grasslands; C, commercial; R, residential.
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bands on their own gave slightly lower accuracy (57.80%) than the individual

original bands (Table 4), which tends to imply that spatial information alone may

not be effective in identifying land-use/land-cover classes (an area we intend to

research further). We also examined the combination of two original bands (bands

3 and 4) and two lacunarity-transformed bands (again bands 3 and 4) using the

overlapping box algorithm based on the 27 � 27 local window. The results from

this approach produced an accuracy level (Table 4) as high as the combination

of three original bands and three lacunarity-transformed bands. This is prob-

ably because IKONOS bands 2 and 3 are visible bands and therefore highly

correlated.

Conclusions

Urban remote sensing is currently experiencing a paradigm shift away from spec-

tral-only classification and toward the identification of urban objects using spatial

metrics and neighborhood-based pattern recognition. Most of the conceptual re-

structuring is underscored by the availability of very high spatial resolution image-

ry, but also by the practical necessity of generating base maps of urban land use.

Our work reported in this article is a contribution to research on spatial and textural

identification of urban objects. We explored the utility of lacunarity to measure

urban heterogeneity where results suggest that the overlapping box approach is

more effective than the skipping box alternative. We documented that there is no

significant difference between window sizes, except for the case of the 9 � 9 win-

dow, and it might be reasonable to conclude that the 15 � 15, 21 � 21, and

27 � 27 windows are the most effective sizes in our study. It was also found that the

combination of two original bands (bands 3 and 4) and two lacunarity-transformed

bands (bands 3 and 4) is as accurate as the combination of three original bands and

three lacunarity-transformed bands. The combination of three original bands and

three lacunarity-transformed bands is only a slight improvement on the combina-

tion of three original bands and one lacunarity-transformed band (band 3). How-

ever, what is certain is that the original bands alone or the purely lacunarity-

transformed bands are not effective for this type of land-use and land-cover

mapping.

As a footnote, although variable, our results are very much in line with other

documented work on textural and spatial characterization of high spatial resolution

sensor data of urban land cover. It seems metrics, be they indices of dispersion,

contagion, fractal, or lacunarity, are highly sensitive to the initial image segmen-

tation, and inextricably affected by site, time, and scene. Another reason for small

and variable improvements in urban representation is the conceptual gulf between

the computational limitations of the discretized remote sensor data model and the

heterogeneous and dynamic nature of the urban landscape. Such a gulf may prove

difficult to bridge immediately with either spectral or textural/spatial indices, and a

more integrative approach may ultimately be more appropriate. However, for now
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our work on lacunarity demonstrates another contribution to the potential for spa-

tial metrics to characterize the increasingly finer spatial resolution of remote sensor

data. We hold firm to our belief that highly detailed, spatially heterogeneous urban

land cover can be measured by algorithms that are equally sensitive to geometric

fluctuations.
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