
Abstract
Edge effects have been a problem in image classification
especially when scale-based textural methods were included
in the classification process. This paper proposes a new
approach to reducing edge effects. The essence of the new
approach is that all pixels in a moving window make use
of the textural information instead of only the center pixel
as in the traditional moving window method. The perform-
ance of the new approach was tested in three classification
scenarios. The results show that the new approach generally
produced higher accuracy with larger window size and was
much less affected by the edge issues than the traditional
moving window method. The new approach yields satisfac-
tory results as long as the window size is smaller than the
land-use polygons and the class boundaries are not too
complex.

Introduction
Texture information has long been employed to improve
the classification accuracy of remotely sensed imagery (Hsu,
1978; Gong and Howarth, 1992; St-Onge and Cavayas,
1995; Jensen, 2005). As image resolution increases, land-use
classes become more and more heterogeneous, and the
statistical distributions of the pixel values become seldom
normal. This has made traditional spectral-based classifiers
such as the maximum-likelihood classifier yield unsatisfac-
tory results, as it violates their assumptions such as the
multivariate normal distribution (Haack et al., 1987; Chen
et al., 2004).

The incorporation of textural information in the map-
ping and classification process using the traditional moving
window method brings about new problems (Ferro and
Warner, 2002). Large windows produce stable textural
measures but large edge effects as well. Small windows have
reduced edge effects but less stable textural measures. The
trade-off between edge effect and window size is hard to be
predetermined. The edge issue is blamed for most of the
classification errors (Maillard, 2003; Warner and Stelnmaus,
2005; Pearlstine et al., 2005). As a result, many researchers
avoided the edge pixels in accuracy assessment, and an
overly optimistic result might be obtained (Ferro and
Warner, 2002).
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Studies to find the optimum window size prior to
image classification have been going on for a long time and
contradictory results were reported in the literature. Nellis
and Briggs (1989) suggested that small window sizes might
be appropriate in complex landscapes and large window
sizes in homogeneous landscapes. Marceau et al. (1990), in
a study using SPOT imagery, found that the window size that
maximized the classification accuracy depended on each
specific land-use class and the average window sizes of
17 � 17 (340 m by 340 m) and 25 � 25 (500 m by 500 m)
achieved satisfactory classification accuracy for more than
one land-use type. Gong et al. (1992) indicated that win-
dows larger than 7 � 7 (140 m by 140 m) yielded unsatis-
factory classification accuracy using SPOT images. Gong
and Howarth (1992) found that the optimum window size
depended on the land-use classes studied. Clearly, using the
traditional moving window method, the optimum window
size depends on many factors, including pixel resolution,
size of land-use polygons, and the homogeneity of land-use
classes. Despite the above studies, there are no set rules on
how to determine the optimal window size prior to image
classification (Hodgson, 1998). Gong (1994) used a simple
thresholding and region-growing techniques to reduce edge
effects. Maillard (2003) suggested extracting edges prior to
classification.

Besides the supervised moving-window method, another
approach that incorporates textural information in the
classification is the split-and-merge segmentation algorithms
(Haralick and Shapiro, 1985; Ojala and Pietikäinen, 1999;
Ojala et al., 2002; Hu et al., 2005; Lucieer and Stein, 2005;
Lucieer et al., 2005). The performance of these algorithms
depends on the textural measures, various parameters, and
the complexity of the images. These algorithms recursively
divide an image into homogeneous regions based on textural
measures. To have stable textural measures, these algorithms
usually impose a minimum size on the sub-blocks and then
apply a boundary-refining procedure, which improve the
accuracy of the boundaries to some degree.

From a cognitive perspective, Hodgson (1998) found
that classification accuracy from visual analysis conducted
by human interpreters increased monotonically with
increasing window size, unaffected by edge effects present
in purely automated classification. This paper presents a
new, automated approach to reducing edge effects in image
classification. In this paper, the edge effect refers to the
inaccurate or undefined class membership for the pixels
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Figure 1. Illustration of the edge
effects. The pixel (black point) is
highly likely to be misclassified using
the textural measures in window 2 as
it is the center pixel, whereas it has a
much better chance of being correctly
classified if window 1 is used. The
dashed line is the class boundary.

located near the edge of an image or along the class bound-
aries within an image. In general, large window size has
large edge effects. The performance of the new approach
was compared with the traditional moving window
approach in three classification scenarios.

The New Approach
In the traditional method, a moving window of size
m � n (usually m � n) is centered on each pixel and tex-
tural measures are computed from this window. The class
membership of the center pixel is then decided based on
a classification rule. Pixels close to the edges of two
or more classes tend to be misclassified because of the
confusion caused by mixed classes in the window. One
problem with the traditional method is that information
collected from the entire moving window is only useful
to the center pixel and is not utilized by other pixels in
the window. In the new approach, for each window,
similarity indices are calculated between the textural
measures of the window and the textural measures of the
training samples of all target classes. The similarity index
measures the degree of similarity between two sets of tex-
tural measures. All pixels in the window will utilize the
information and record the highest similarity index and
its corresponding target class. Each pixel, except those
near the border, gets m � n highest similarity indices
since it is included within m � n windows. From the
m � n similarity indices, each pixel will record the
highest one and its corresponding class. As shown below,
possible similarity indices include the probability density
if the maximum-likelihood classifier is used and the
negative or the inverse of the distance if the minimum-
distance classifier is used.

Note that in this new method, all pixels in a window
obtain the same highest similarity index from that particu-
lar window. Thus, after being included and processed in
m � n overlapping windows, a pixel close to the class
boundary will be more likely to get the highest similarity
index from a window completely located within the class
it really belongs to. This will surely mitigate the edge
effects considerably. This is illustrated in Figure 1, in
which the center pixel (the black point) is close to the
boundary between class A and class B. If the traditional
moving window method is used, the pixel will be classified
based on texture within window 2 only. Since window 2
contains two classes, error and confusion are likely to arise.
But with the proposed method, the pixel will have a much
higher chance of being correctly classified into class A
since it is included in window 1 and texture in window 1
will have a better chance of being correctly categorized as
class A texture because window 1 contains only class A
texture.

The assumption underlying the new approach is that
texture containing mixed classes of pixels is dissimilar to
texture containing only one class. The idea comes from
the way human image interpreters deal with boundaries.
Humans recognize the dissimilarity between texture contain-
ing mixed classes and texture containing one single class,
and a pixel close to the boundary is classified by humans
based on its surrounding homogenous texture instead of by
its surrounding window which may cover two or more
classes.

The new approach differs from the traditional method
only in the way the similarity index computed from a
window is used. It requires no change in a classifier since
the comparison based on a similarity index is already
included in most classifiers. The method does not involve
thresholding either, which has to be decided subjectively.

A Worked Example
Figure 2 shows a worked example to better illustrate the
proposed approach using the minimum-distance classi-
fier. The larger the distance, the more dissimilar between
textural measures of a window and textural measures of a
class. Therefore, for the new approach, the similarity index
is chosen as the negative of the distance. Figure 2a is a
6 � 6 image with three three-uniform classes distinguished
by their pixel values 1, 3, and 5. The three classes are
referred to as class 1, class 3, and class 5, respectively. The
mean values of the three classes are used as the textural
measure to discriminate among them. The mean values
of a 3 � 3 moving window, rounded to one decimal point,
are shown in Figure 2b. Figure 2c is the classified image
by the traditional moving window method using the
minimum-distance classifier. Four edge pixels, two of
which belonging to class 1 and two of which belonging to
class 5, are misclassified as class 3 pixels. Also note that
the pixels on the border of the image are not classified
because there is no window which is centered on them,
and also falls entirely within the image. Using the new
approach, when the moving window is centered at position
(2, 2), i.e., the second row and the second column, the
window has a mean value of 1, and the mean value is
closest to class 1. Therefore, the window obtains from
class 1 its highest similarity index of 0, which is the
negative of the distance. All nine pixels are assigned this
similarity index, as shown in Figure 2d. Since none of
them is assigned a similarity index before, there is no
comparison in this step. When the window moves to
position (2, 3), the window has a mean of 2.3 and the
mean is closest to class 3. Therefore, the window obtains
from class 3 its highest similarity index of �0.7, which
is the negative of the distance. After comparison, the six
pixels, which fall within both the current window and
the previous window and already have a similarity index
of 0, keep 0 as their similarity indices since 0 is larger
than �0.7. The remaining three pixels in the current
window obtain their similarity indices of �0.7 from
class 3. Figure 2d also shows the intermediate results when



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Ap r i l  2008 433

Figure 2. A worked example of the proposed
method using a 3 � 3 moving window: (a) a 6 � 6
image with three uniform classes (class 1, class 3,
and class 5), (b) the image showing the averages
of the moving window, (c) classified image using
minimum distance classifier by traditional moving
window method, (d) the intermediate results of the
maximum similarity indices with corresponding class
in parentheses after the window moves to row 2
and column 4, (e) the intermediate results after the
window moves to row 2 and column 5, and (f) the
final results of the new approach.

the window moves to position (2, 4). Figure 2e shows the
intermediate results after the window moves to position (2,
5). The window has a highest similarity index of 0 with
class 5. After comparison, the six pixels, which fall within
both the current window and the previous window and
already have a similarity index of �0.7 from class 3, obtain
new similarity index of 0 from class 5 since 0 is larger then
�0.7. Through this comparison, the six pixels obtain
similarity indices from a class which they actually belong
to, and therefore are going to be correctly classified. After
the window moves to the last position (5, 5), all pixels are
assigned the largest similarity indices from the class they
really belong to. The edge effect is automatically elimi-
nated during the process in this artificial example.

Classification Scenarios
In this section, we describe three classification scenarios and
compare the results generated by the new approach and the
traditional method.

In all three scenarios, three textural measures were
used, i.e., mean, standard deviation (std), and entropy. They
were computed using the following formula:

(1)

(2)

(3)

(4)

where M and N are the height and width of the moving
window, and P (i, j ) is the pixel value at position (i, j )
within the window.

The minimum-distance classifier and the maximum-
likelihood classifier were used in in the first two scenarios,
and the logistic regression was used in the last scenario.
For the minimum-distance classifier, the distance d was
calculated as: , where x, y, z
are the mean, standard deviation, and entropy, respectively,
calculated from the moving window, and are the
mean values of the three measures for a particular class.
As in the worked example, the similarity index is the
negative of the distance, i.e., �d. For the maximum-
likelihood classifier, the similarity index in the new
approach is the probability density of a multivariate normal
distribution:

(5)

where x is the vector comprising of the three textural
measures, 	 is the mean vector of textural measures, and 

is the variance-covariance matrix of textural measures.

In all three scenarios, one hundred random textural
samples for each class were collected to compile the statis-
tics needed for the two classifiers.

Classification of an Artificial Image
In the first classification scenario, an artificial image was
generated, which consisted of four subimages (Figure 3).
Each subimage was of size of 100 � 100 pixels, generated
from a Gaussian distribution with different parameters. The
mean and standard deviation of each Gaussian distribution
are presented in Table 1. Figure 3 also shows the probability
density curves of the four distributions. It is apparent that
there is considerable overlapping in the range of pixel
values among the four subimages.

Figure 4 shows the per-pixel classified image using
the maximum-likelihood classifier without using textural
measures. One hundred training pixels were randomly
selected for each class. The overall accuracy was 40.00
percent and the kappa coefficient was 21.34 percent. It
was apparent that per-pixel spectral classification did not
provide satisfactory results in this case. However, each
subimage showed a distinctive textural pattern, which could
be used to distinguish itself from other subimages. Figure 5
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Figure 3. (a) An artificial image consisting of four subimages generated from different
Gaussian distributions, and (b) Probability density curves of the four Gaussian distributions.

shows the classification accuracy of the image by the two
approaches using both the minimum-distance classifier and
the maximum classifier with window sizes varying from
3 � 3 to 33 � 33. In the case of the traditional approach,
the accuracy increased first and then decreased steadily.
The cutoff point of the window size was 9. This reflects
the common dilemma in textural analysis. Small windows
are associated with unstable textural measures while large
windows are associated with large confusion along class
boundaries. In comparison, the overall accuracy achieved by
the new approach generally increased as the window size
increased and leveled off when the window size was large
enough (larger than 15 � 15). For the two smallest window
sizes (3 � 3 and 5 � 5), the new approach achieved lower
accuracy than the traditional approach when the maximum-
likelihood classifier was used. It could be explained that
small window size did not provide stable texture measures,
causing the maximum-likelihood classifier unable to
discriminate successfully among different classes. The
minimum-distance classifier was less affected by this
factor because it utilized only the means calculated from
the samples while the maximum-likelihood classifier made
use of not only the means but also the variances and
covariances.

Figure 6 shows the classification results of the two
approaches with a window size of 33 by 33 by the two
classifiers. Some observations can be made. First, the
traditional method left a strip of pixels along the border
of the image unclassified using both classifiers. The width
of the strip was approximately half the window size. The
existence of the strip was due to the fact that windows
centered upon the pixels in the strip had parts outside the

image region. It was worth noting that the overall accuracy
used here was based upon pixels not in the strip. For the
new approach, all pixels were classified and the overall
accuracy was based upon all pixels in the image. Second,
the confusion along the class boundaries was much larger
for the traditional approach than for the new approach. For
the traditional approach, the confusion took place mainly
along the horizontal middle part. In the middle left part,
pixels tended to be misclassified as belonging to class B.
This was because the mean and standard deviation of class
B were between those of class A and class C, and a window
along the boundary of class A and C tended to have a mean

Figure 4. Per-pixel spectrally
classified image using maximum-
likelihood classifier.

TABLE 1. MEANS AND STANDARD DEVIATIONS OF FOUR GAUSSIAN

DISTRIBUTIONS USED TO GENERATE SUBIMAGES AS SHOWN IN FIGURE 3A

Name Position in Figure 3a Mean Standard Deviation

Class A Top Left 150 10
Class B Top Right 160 20
Class C Bottom Left 170 30
Class D Bottom Right 180 40
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and standard deviation close to the averages of classes
A and C, which were then similar to those of class B.
In the middle right part, the confusion occurred for similar
reasons. For the new approach, the confusion was much
less and could be mainly attributed to the random fluctua-
tions in the texture. Both classifiers achieved very satisfac-
tory results using the new approach.

Classification of a Mosaic Image
A mosaic image (Figure 4) was created, which included
six land-use samples: commercial, industrial, water,
single-family, multifamily, and forest land uses. Each land
-use sample was of size of 200 by 200 pixels (Figure 7).
These land-use samples were taken from the panchro-
matic band of an Ikonos image, which covered part of
metropolitan Atlanta, Georgia. The Ikonos image was
taken on 29 December 2000. The coordinate system was
Universal Transverse Mercator, Zone 16. The datum
was WGS84.

Figure 8a shows the overall classification accuracy by
the two approaches using the minimum-distance classifier.
Because of the wide variation within each class, the window
size began at 17 � 17. For the traditional method, the
overall accuracy increased as the window size increased,
reaching a maximum of about 82 percent at window size
of 67 � 67, then dropped gradually by a small amount as
window size further increased. For the new approach,

the overall accuracy generally increased as the window
size increased until it leveled off. There were only a few
minor exceptions, which deviated from the trend only by a
negligible amount. The new approach achieved higher
accuracy than the traditional method irrespective of the
window size used.

Figure 8b presents the overall classification accuracy by
the two approaches using the maximum-likelihood classifier.
When the window size was less than 55 � 55, the tradi-
tional approach produced slightly higher accuracy than
the new approach. This result was different from that
obtained using the minimum-distance classifier. It could be
explained that small window sizes do not provide stable
texture measures, causing the maximum-likelihood classifier
unable to discriminate successfully among different classes.
As a result, the new approach yielded lower accuracy than
the traditional method. When the window size was larger
than 55 � 55, the traditional approach yielded lower and
lower accuracy as the window size increased whereas for
the new approach, the overall accuracy kept increasing
until it leveled off. When the window size was large enough
(larger than 55 � 55) to generate stable measures, the
maximum-likelihood classifier using the traditional moving
window method achieved lower accuracy than using the
new approach.

Figure 9 shows the classified images for a window
size of 85 � 85. For both classifiers, we see that the new

Figure 5. Classification accuracy with different window sizes for the
artificial image by the traditional and the new methods: (a) using the
minimum-distance classifier, and (b) using the maximum-likelihood classifier.



436 Ap r i l  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

approach reduced edge effects substantially. The edges
between water and forest, water and industrial land-use,
multifamily and forestland uses were clear by the new
approach. With the maximum likelihood classifier, the
boundaries between all classes were very close to the true
boundaries using the new approach. Some errors arose,
which could be ascribed to the considerable variation within
each class shown in the mosaic image.

For the new approach, the smoothing effect was clear in
both cases. Some small isolated clusters of pixels, present
in the two images by the traditional method, were replaced
with surrounding large classes. This smoothing effect was
caused by the way the new approach utilized the textural
information in the moving window. The small isolated
clusters were large deviations from the surrounding pixels in
terms of textural patterns they presented. An entire small
cluster could be removed if its separate parts were removed
by many neighboring moving windows using the criterion of
highest similarity index. The smoothing effect was gener-
ally preferred because the smoothed map would easily be

converted into areal units in vector format in subsequent
analysis. In many traditional post-classification processing,
a majority operation is applied to reduce the salt-and-pepper
pattern and to obtain a smoothed map.

Identification of Non-agricultural Land-use by Logistic Regression
In the third scenario, an Ikonos image, acquired on 18 May
2001, covering part of rural northeastern Alabama was used.
The projection was Universal Transverse Mercator, Zone 16.
The datum was WGS84. A subset of the image (Figure 10)
was extracted (600 � 300 pixels) and the subset contained
two types of land-covers, agricultural land-use, and non-
agricultural land-use. The agricultural land had a smooth
pattern while the non-agricultural land had a rough and
coarse pattern. The purpose of this experiment was to
delineate the area of non-agricultural land-use from agricul-
tural land-use. In the first two scenarios, the shape of the
subimages matched the shape of the window, which might
help to achieve favorable results. In this scenario, the class
boundaries were irregular.

Figure 6. Classified results of the artificial image with a window size of 
33 � 33: (a) the by minimum-distance classifier using the traditional method,
(b) by maximum-likelihood classifier using the traditional method, (c) by
minimum-distance classifier using the new method, and (d) by maximum-
likelihood classifier using the new method.
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Figure 7. Mosaic image of six land use classes from the panchromatic
band of an Ikonos image of Atlanta, Georgia: (a) commercial, industrial,
and water, and (b) single-family, multifamily, and forest.

Figure 8. Classification accuracy with different window sizes for the artificial image by the
traditional and the new methods using (a) the minimum-distance classifier, and (b) the
maximum-likelihood classifier.



In this experiment, we used logistic regression (McCul-
lagh and Nelder, 1989; Pampel, 2000) to distinguish between
the two types of land-uses. Logistic regression is a useful
tool when the dependent variable is dichotomous where the
ordinary least squares regression is inappropriate. In logistic
regression, the logit, which is the logarithm of the odds of
an event (the ratio of the probability that an event occurs to
the probability that it fails to occur), is treated as a latent
variable and assumed to have a linear relationship with the
input data:

(6)

so that we have:

(7)

where a is a constant, is the parameter vector, and 
is the input vector, comprising of the three textural meas-
ures in this experiment. Based on training data, maximum-
likelihood estimates of the parameters (a and ) in the
above equation can be obtained through an iterative
process by the Newton-Raphson algorithm (McCullagh
and Nelder, 1989; Pampel, 2000). The parameters can

b
r

x
r

b
r

438 Ap r i l  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

then be used to compute the probability of an event.
Logistic regression has been successfully applied to map
one particular type of phenomenon on an entire image
such as the detection of burned scars (Pu and Gong, 2004)
and the delineation of an exotic, invasive plant in Florida
(Pearlstine et al., 2005).

In this experiment, the non-agricultural class was
treated as the event. So the probability of 1 was indicative
of complete non-agricultural texture and the probability of
0 was indicative of complete agricultural texture. The

Figure 9. Classified results of the mosaic image with a window size of 85 � 85:
(a) the by minimum-distance classifier using the traditional method, (b) by maxi-
mum-likelihood classifier using the traditional method, (c) by minimum-distance
classifier using the new method, and (d) by maximum-likelihood classifier using
the new method.

Figure 10. A subset of Ikonos panchromatic band
with agricultural and non-agricultural land-uses.

logit � log
p

1 � p
� a � bTx

rr

p �
exp(a � bTx )

1 � exp(a � bTx)
r r

r r
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similarity index was: p�1 if p �� 0.5 or �p if p � 0.5. The
value of 0.5 was used as the cutoff point. Zero is the largest
possible similarity index. This similarity index was the
negative of distance in terms of probability.

Figure 11 plots the overall accuracy using the two
approaches with window sizes varying from 17 � 17
to 51 � 51. As in previous scenarios, the new approach
achieved higher accuracy over the traditional method.
As the window size increased, the traditional method
generally produced lower and lower accuracy whereas
the accuracy by the new approach increased until it
leveled off.

The classified images for the non-agricultural land use
with the window size of 33 � 33 are shown in Figure 12.
We see that for the traditional method, the commission errors
largely occurred along the entire boundary between the
agricultural and non-agricultural land uses, with some
commission errors occurring as one small isolated clump.
For the new method, the isolated small cluster of pixels was
gone because of the smoothing effect discussed above. For
the new method, the commission errors largely occurred
on the top-middle part of the image. A close examination
of the top-middle part of the image revealed that there were
some bright pixels standing out from surrounding pixels
in the agricultural land-use. This large anomaly might
yield textural measures that were close to those of non-
agricultural land-use, thus causing errors. For the traditional
method, the omission errors occurred as four small clusters
in the image (the pixels along the border were not counted).
But three clusters were gone in the classified image by
the new approach due to the smoothing effect. The new
approach produced some small omission errors along the
boundary.

Two computational considerations are noted here
if logistic regression is used in this application as the
basis for delineating dichotomous land-covers. First, the
maximum-likelihood estimates do not always exist for
logistic regression (Albert and Anderson, 1984; Santner and
Duffy, 1986). In that case, the logistic model is question-
able and should not be used. In our experiments, we could
not find a convergence when the window size was larger
than 51 � 51. Although popular statistical packages usually
continue the process despite the failure to achieve conver-
gence, the model, if used, may give unexpected results for
both the traditional and the new methods.

Second, if the logit values are large enough (say larger

than 50), the probability we get from will
exp(logit)

1 � exp(logit)

always be 1 due to the precision limits in the computer for
two different logit values even when there is a noticeable
difference between them. The same is true when the logit
is too small, and we will always get a probability of 0. As a
result, a pixel along the boundary may be assigned the
largest similarity index of zero when most of the moving
window is agricultural and get the same largest similarity
index of zero when most of the moving window is non-
agricultural. In this case, the pixel has the chance of getting
two maximum indices from two different categories and the
order in which the pixel gets the indices affects the results.
Since the probability increases monotonously as logit
increases, this problem is eliminated if we compare the logit
values directly when two logit values have the same sign.
When two logits have different signs, we only need to
compare the sum of the two logits with zero. The logit
generally does not exceed the precision limits in the
computer and can be compared reliably.

Discussion
From the above experiments, we show that the new approach
has the following characteristics. First, the new approach
consistently achieved higher accuracy with slight fluctuations
until it leveled off, whereas the accuracy of the traditional
approach generally decreased with increasing window size
after the window size passed a threshold. Second, the new
approach is capable of classifying border pixels, while the
traditional method left a strip of border pixels unprocessed.
Third, the new approach has a smoothing effect. Small
isolated clusters, present in classified images by the tradi-
tional method, tended to be eliminated in classified images
by the new approach. Fourth, the side length of the window
could be an even number in the new approach because
it does not use the concept of the center of the window,
whereas in the traditional approach, the window size was
usually odd to make sure the center pixel was the exact
center.

For the new approach to be effective, the following
requirements should be met. First, training samples should
be representative as in any supervised classification
scheme. Second, the texture measures used to determine
class membership should be able to discriminate between
homogenous samples and samples including more than one
land-cover classes. This is important because the underlying
assumption of the new approach is that texture containing
mixed classes is dissimilar to texture containing one single
class. If mixed texture yields a similarity index higher than
that of homogeneous texture, errors will arise along class

Figure 11. Overall classification accuracy using logistic regression.
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boundaries because part of pixels in the mixed texture
will be misclassified. Third, similarity index should be
comparable among different windows, such as the probabil-
ity density in the maximum-likelihood classifier, and the
negative or the reverse of the distance in the minimum-
distance classifier used in this study. In comparison, if
linear discriminant analysis is used, the discriminant score
should not be used as the similarity index, but rather the
probability values derived from the discriminant scores
should be used because the linear discriminant scores are
not comparable among different observations while proba-
bility values are (Tatsuoka and Lohnes, 1988, p. 369).

In this paper, we carried out the experiments on only the
panchromatic band of Ikonos images. The proposed method
can easily be extended to multi-spectral imagery, where
the similarity index can be calculated based on textural
measures obtained from multiple bands. The complexity
will also be greatly increased as the dimension increases.
The proposed approach could easily work together with
other textural measures and classifiers.

The new approach is not a panacea. For pixels that
have no chance of entirely falling in a window containing
only one type of texture, the edge issues tend to persist
and the pixels tend to be misclassified. This happens
when the class boundaries are too complex or the land-
cover polygons are smaller than the window size used.
This problem is inherent to regularly shaped windows. No
single one geometric shaped window provides universally
best results for all boundary types. Although dynamic
windows with changing shape and size according to local
structures had been suggested as a possible solution
(Hodgson, 1998), the irregularity of the window shapes
and sizes will make comparisons of their textural meas-
ures inconsistent and unreliable, leading to unexpected
results and difficult interpretation. When there are a large
number of classes in an image, particularly in large high-
resolution images, the class polygon size varies substan-
tially from one class to another class and the probability
of errors may increase substantially with the increase in
the number of classes.

Figure 12. Classified image overlaid on the reference map for non-
agricultural land-use with a window size of 33 � 33: (a) by the traditional
method, and (b) by the new method.



Conclusions
This paper proposes a new approach to reducing the edge
effects in image classification. In the new approach, all
pixels in a moving window make use of the textural infor-
mation instead of only the center pixel as in the traditional
moving window method. Results from three classification
scenarios, including the classification of an artificial image,
a mosaic image and a natural scene, show that the new
approach generally produced higher accuracy with increas-
ing window size and was much less affected by edge issues
than the traditional moving window method. The new
approach yielded satisfactory results as long as the window
size does not exceed the size of the land-cover polygons.
More experiments with more complex class boundaries and
different textural measures should help in revealing the best
combination of textural measures and classifiers for this
approach to reduce edge effects.
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