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Abstract

The abundant research examining aspects of social-ecological resilience, vulnerability, and 

hazards and risk assessment has yielded insights into these concepts and suggested the importance 

of quantifying them. Quantifying resilience is complicated by several factors including the varying 

definitions of the term applied in the research, difficulties involved in selecting and aggregating 

indicators of resilience, and the lack of empirical validation for the indices derived. This paper 

applies a new model, called the resilience inference measurement (RIM) model, to quantify 

resilience to climate-related hazards for 52 U.S. counties along the northern Gulf of Mexico. The 

RIM model uses three elements (exposure, damage, and recovery indicators) to denote two 

relationships (vulnerability and adaptability), and employs both K-means clustering and 

discriminant analysis to derive the resilience rankings, thus enabling validation and inference. The 

results yielded a classification accuracy of 94.2% with 28 predictor variables. The approach is 

theoretically sound and can be applied to derive resilience indices for other study areas at different 

spatial and temporal scales.
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Introduction

Coastal communities around the world are facing increasing threats from coastal hazards, 

due partly to global climate change and partly to the increase in anthropologic activities 

along the coasts. Coastal hazards include both large-scale, rapid-moving disturbances such 
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as hurricanes and storm surges, and more slow-moving types of disturbances, including 

coastal land subsidence, sea level rise, and the degradation of ecosystem services over time. 

Although many coastal hazards are associated with natural processes, the threats are 

intensified by human action, including rapid population growth, limited planning for land 

use and infrastructure investment, and lack of comprehensive policy measures to prevent or 

mitigate hazardous events. The 2005 Hurricane Katrina and the 2010 Gulf of Mexico oil 

spill disasters are two examples of large-scale disturbances that resulted in significant 

damages to the Gulf Coast region in the United States (Lam et al. 2009, 2012; LeSage et al. 

2011a, b). These coastal hazards affect the health and safety of the communities, as well as 

their long-term social and economic stability. What makes a coastal community less 

vulnerable to these hazards and then bounce back after the events, or in other words, become 

more resilient, is a major question facing environmental researchers and policymakers.

In recent years, many researchers from a wide range of disciplines have examined various 

aspects of hazards, risk assessment, vulnerability, adaptability, and social-ecological 

resilience (Cutter et al. 2003; Vogel 2006; Adger and Brown 2010; Tierney 2012). However, 

most of the literature on resilience tends to be conceptual, with few studies focusing on 

empirically quantifying the concept. A landmark report produced by the U.S. National 

Research Council (NRC) emphasized the need to build disaster resilience at both national 

and local levels, and identified the development of metrics and tools for measuring and 

monitoring community resilience as one of six key pathways toward building resilience 

(NRC 2012).

Quantifying resilience, however, is complicated by several factors including the varying 

definitions of the term applied in the research. In addition, there are difficulties inherent in 

selecting and aggregating indicators of resilience; and in developing a method for empirical 

validation for the indices derived. The development of a meaningful and practical resilience 

index is needed to foster our understanding of what we mean by resilience and how it may 

be increased. A straightforward resilience assessment model grounded on theoretical 

principles would support predisaster planning and help guide postdisaster assistance to 

communities after major disturbances (NRC 2012; Reams et al. 2012).

This paper applies a new approach to measure community resilience to coastal hazards for 

the 52 counties in the United States along the northern Gulf of Mexico. The resilience 

inference measurement (RIM) approach considers three elements: exposure, damage, and 

recovery, and the two relationships linking the three elements: vulnerability and adaptability, 

in deriving a community resilience index. The RIM approach utilizes statistical methods for 

empirical validation. In the following sections, the authors first provide a brief background 

of the issues and related research surrounding resilience measurement. The RIM approach is 

then introduced. Applying the RIM approach, this paper first conducts a K-means cluster 

analysis to derive the a priori resilient rankings for the 52 counties. Discriminant analysis is 

then used to characterize statistically the a priori resilient groups via a number of 

socioeconomic and environmental indicators. An index of resilience is then constructed 

using the probability of group membership values derived from the discriminant analysis. 

The authors argue that the approach is theoretically sound; it is a practical approach to 

measuring community resilience while enabling empirical validation and providing 
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predictive functions for future inference, thus overcoming several major difficulties in 

assessing levels of resilience.

Challenges in Measuring Community Resilience

Two main issues in resilience measurement persist, making the development of a practical 

and generalizable community-resilience index difficult.

Definitional Issues

There are scores of definitions of resilience, and a recent report by the Community and 

Regional Resilience Institute (CARRI 2013b) provides a useful review of the most 

commonly used definitions. In brief, the term community resilience has evolved mainly from 

the literature on social-ecological resilience. The two earliest definitions of resilience seen in 

this literature are: engineering resilience which refers to how fast a system can return to the 

original state after a disturbance, and ecological resilience which indicates how far the 

system could be perturbed without shifting to a different state (Holling 1996; Folke et al. 

2002; Walker et al. 2006a, b). Adger and others defined resilience as “the capacity of linked 

social-ecological systems to absorb recurrent disturbances such as hurricanes or floods so as 

to retain essential structures, processes, and feedbacks.” They elaborated further that the 

concept of resilience includes “the degree to which a complex adaptive system is capable of 

self-organization (emphasis added), and the degree to which the system can build capacity 

for learning and adaptation (emphasis added)” (Adger et al. 2005). Norris and others 

considered resilience as a process linking communities’ capacities in response to the 

disturbance (Norris et al. 2008). The NRC report defined resilience as “the ability to prepare 

and plan for, absorb, recover from, and more successfully adapt to adverse events” (NRC 

2012). Hence, resilience can be regarded as a capacity, a process, an outcome, or a 

combination of some of the three concepts (Norris et al. 2008; Cutter et al. 2010; Sherrieb et 

al. 2010; CARRI 2013b).

Many studies link the concepts of vulnerability and resilience, with some broadening the 

definition of vulnerability to include resilience while others incorporating vulnerability as 

part of the larger resilience concept. The Intergovernmental Panel on Climate Change 

(IPCC) (IPCC 2001) considered vulnerability a function of three factors: exposure, 

sensitivity, and adaptive capacity, and Cutter and others (2003) defined vulnerability as “a 

measure of both the sensitivity of a population to natural hazards and its ability to respond 

and recover from the impacts of hazards;” both definitions include aspects of resilience. 

Recently, the concept of sustainability is included in the dialogue, which adds even more 

complexity to resilience measurement. In distinguishing the differences and commonalities 

between vulnerability and resilience and how they are related to sustainability science, 

Turner proposed the use of the concept of trade-offs (among various sets of environmental 

services and human outcomes) as a way to merge the three concepts: vulnerability, 

resilience, and sustainability (Turner et al. 2003; Turner 2010).

To summarize, researchers in the community acknowledge lingering disagreements over the 

definition of resilience and its underlying emphasis. Each definition has its own merits and 

the choice of a definition depends on the application domain (CARRI 2013b). This paper 
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adopts the definition by the NRC report as previously stated (NRC 2012), and considers 

resilience as comprising both aspects of vulnerability and adaptability (Fig. 1).

Measurement Issues

There are significant difficulties involved in measuring community resilience. First, the 

range of definitions of resilience that is evident from a review of related research 

complicates the task of selecting indicators of the concept. Once appropriate indicators are 

identified, mathematical and statistical methods will need to be developed to evaluate the 

indicators iteratively. Second, both social and natural aspects of resilience should be 

included in a comprehensive assessment, along with a consideration of linkages between 

natural and social systems, because a system may have high social resilience but low 

ecological resilience. For example, in some deltaic regions such as the lower Mississippi 

Delta, levees built to protect highly populated urban areas (e.g., New Orleans) from river 

flooding may lead to a lack of sediments replenishing surrounding rural lands, which in turn 

could make the entire region more vulnerable to subsidence and floods (Blum and Roberts 

2009). Also, there may be a lag time in observing interaction effects between the two 

systems, making the measurement of community resilience more difficult. Third, measures 

of community resilience have seldom been validated. Often, aggregation of indicators of 

resilience has been performed in the context of one study area, making it difficult to apply 

the resultant index or model generally to other communities.

There are quite a few composite indices or metrics in the literature that are related to 

resilience, including, for example, the disaster risk index (Peduzzi et al. 2009), the social 

vulnerability index (Cutter et al. 2003), the baseline resilience indicator for communities 

(Cutter et al. 2010), the community assessment of resilience tool (CART), and the 

community resilience system (CRS) (NRC 2012; CARRI 2013a). These studies have 

contributed to resilience measurement research in various manners; they also point to the 

difficulties involved in resilience measurement. To further illustrate the different approaches 

and the challenges associated with measuring resilience, this paper describes briefly a few 

studies on measuring vulnerability and resilience, which serve as a background for the 

rationale of our approach.

The first, as demonstrated in Yusuf and Francisco (2009), represents the most commonly 

used approach to measuring vulnerability (which includes measurement of adaptive 
capacity, a core component of resilience). The researchers used an additive-weighting 

approach to evaluate subnational areas in Southeast Asia in terms of their vulnerability to 

climate change. They applied the definition developed by the United Nations’ IPCC (2001), 

which considers vulnerability (V) to be a function of exposure (E), sensitivity (S), and 

adaptive capacity (C)

The exposure term captures the type of climate-related hazard presented and the degree to 

which the community is likely to be exposed. Sensitivity refers to the degree to which a 
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system is likely to be affected by climate-related events, and adaptive capacity refers to the 

ability of residents to adjust to changing threat levels to avoid or mitigate the consequences 

of climate change. Variables representing each dimension were selected, weighted 

(somewhat arbitrarily based on related research), and added to become a composite index of 

the vulnerability of each subnational region in Southeast Asia. Their study identified all the 

regions of the Philippines, along with some regions in other countries, as the most 

vulnerable regions to climate change. The study is straightforward and allows for a useful 

comparison among geographic areas; however, the index is limited by the subjective nature 

of weight assignments and the index needs empirical verification.

Nelson and colleagues followed a similar but improved approach to assess the vulnerability 

of Australian rural communities to climate change (Nelson et al. 2010a, b). Recognizing the 

potential value of measures of community vulnerability in formulating and evaluating the 

impacts of public policy, they included more measures of adaptive capacity to complement 

the existing hazard-impact modeling. They created an adaptive-capacity index based on the 

rural-livelihood analysis framework, which includes indicators from five groups of 

community resources or capitals: human, social, natural, physical, and financial (Ellis 2000). 

The selection of variables to represent adaptive capacity was based on a farm survey, and 

then the weighting of the variables was derived from a principal component analysis of all 

the indicators. Although the method and the derived index needs further improvement, their 

studies represent a significant improvement because they emphasize the need to validate the 

selection of variables and their corresponding weights to represent adaptive capacity.

A third approach is the social vulnerability index, which was developed by Cutter and others 

to quantify social aspects of vulnerability (Cutter et al. 2003; Cutter and Finch 2008). They 

constructed the index for all of the counties in the United States. The index is an aggregation 

of 42 socioeconomic variables available from the U.S. Census and identified in the literature 

as being related to social vulnerability. The researchers used a principal component analysis 

to derive 11 factors that accounted for 76.4% of variance of the 42 variables. Then they 

added the factor scores for each county to create the index scores. The most vulnerable 

counties were those with the largest positive standard deviations from the mean, and the 

least vulnerable were those with the largest negative standard deviations. The researchers 

attempted to verify the accuracy of the index by correlating the scores with the number of 

presidential disaster declarations that had been issued for each county. They found no 

correlation (r = −0.099) between the social vulnerability index scores and the disaster 

declarations. However, the approach pioneered by Cutter and colleagues advanced two 

important concepts regarding the measurement of resilience or vulnerability: the need to 

derive the index through statistical modeling and the need to validate the index through 

empirical comparisons with observable outcome.

Significant effort has been made in identifying the most suitable indicators for disaster 

resilience. Cutter and others (2010) introduced a new composite indicator called the baseline 

resilience indicator for communities (BRIC), which is calculated as the arithmetic mean of 

five subindexes related to social, economic, institutional, infrastructural, and community 

capacity. However, validation of the composite indicator has not yet been performed. 

Sherrieb and others (2010) identified an exhaustive list of 88 variables and then used 
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correlation analysis to reduce the set into 17 variables representing two components: social 

capital and economic development, as indicators of capacities for community resilience. 

Researchers at the Community and Regional Resilience Institute created a web-based CRS 

to help planners and leaders assess and improve resilience (CARRI 2013a). The CRS system 

is a self-guided six-step process that has been found helpful to some communities. However, 

several of the pilot communities found it difficult to balance a long-term planning project 

with daily operations on limited resources and did not implement the pilot project prior to 

the completion of the program. This experience further epitomizes the need to develop 

practical tools to support planning and decision making.

Materials and Methods

RIM Approach

As previously stated, this paper adopts the definition of resilience used in the NRC report, 

which is “the ability to prepare and plan for, absorb, recover from, and more successfully 

adapt to adverse events” (NRC 2012). Thus, the RIM framework proposed in this paper 

considers resilience a broader concept that includes aspects of both vulnerability and 

adaptive capacity over time. Specifically, the framework considers three elements: exposure, 

damage, and recovery, and two relationships: vulnerability and adaptability (Fig. 1). 

Exposure and damage are observable measures at time t0 when the hazard event happens, 

whereas recovery is an observable measure reflecting the difference between time t0 and t1 

such as population or economic growth. Vulnerability and adaptability are latent 

relationships between the three elements, whereas resilience capacity, also a latent 

relationship, is indicated by both vulnerability and adaptability. The time variable t0 can be a 

point or an interval, referring either to a single-hazard event at a time point or a number of 

hazard events at a time interval. In this study, the authors used a time interval of 10 years to 

compute the exposure and damage to coastal hazards and the population growth to allow for 

sufficient data for comparison across the Gulf Coast counties.

Vulnerability refers to the latent relationship between exposure and damage, whereas 

adaptability indicates the latent relationship between damage and recovery. If a community 

(e.g., county) has high exposure to a hazard but sustains low damage, then the community is 

considered to have low vulnerability. Similarly, if a community sustains high damage but 

recovers quickly (e.g., return of population), then the community is considered to have high 

adaptability. Resilience is measured according to the two relationships. A high vulnerability/

adaptability ratio is considered low resilience, whereas a low vulnerability/adaptability ratio 

is considered high resilience. The conceptual framework shown in Fig. 1 is in fact very 

similar to some broad vulnerability frameworks used by a number of researchers (IPCC 

2001; Turner et al. 2003).

Also, Fig. 1 aims to portray the underlying resilience processes—mitigation and adaption—

shown in dotted lines in a simplified manner for visualization, where in fact processes 

leading to resilience are indeed complex. The purpose of showing the underlying resilience 

processes is to provide a more complete, dynamic view of the resilience processes. In terms 

of index development, however, only the information on the current resilient cycle is used. 

The RIM model will evaluate the conditions of the three boxes (exposure, damage, and 
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recovery) and their relations with the underlying capacities (or lack of capacities) as 

represented by a number of socioeconomic and environmental variables to determine the 

resiliency of a community. In Fig. 1, mitigation refers to the actions or strategies intended to 

reduce the likelihood or intensity of exposure, such as CO2 emission reduction designed to 

decrease global warming, possibly leading to fewer hurricane strikes (IPCC 2007). 

Adaptation or adaptive measures are the actions or strategies used to adjust the conditions 

and improve the social, ecological, and built environments to lessen the impacts of disruptive 

events (Hamin and Gurran 2009). Examples of adaptive measures include elevating housing 

units and other structures above likely flood levels to avoid or reduce flood damages.

Previous research suggested that the recovery patterns of an ecological system might be 

described by four states (Bellingham et al. 1995; Batista and Platt 2003; Liu et al, 

unpublished data, 2006). We modified slightly the names of the four states and adopted them 

into the RIM framework to represent four resilience rankings. From low-to-high resiliency, 

they are susceptible, recovering, resistant, and usurper (Fig. 2). We retained the descriptive 

names used to distinguish the four states observed in the ecological system to maintain 

consistency, realizing the connotations may be perceived differently in a social system. A 

susceptible state refers to that community that has been unable to fully recover after a 

disturbance, such as a hurricane or large-scale flood. A recovering community implies that it 

is able to fully recover from the episode. A community that felt a much smaller impact (i.e., 

damage) from the disturbance can be described as resistant. A usurper community is one that 

is only somewhat influenced by the disruption and exhibits a population increase that 

exceeds the predisturbance levels.

Fig. 3 illustrates the generalized relationships between the four resilience states and the RIM 

model. The x-axis shows the three elements (exposure, damage, and recovery); and the y-

axis shows the deviation of the three variables from their means (i.e., the zero-value lines). 

The community’s ability (or disability) to minimize the damage at the time of the event can 

be called vulnerability, as shown by the slope of the hypothetical line between exposure and 

damage. The higher the slope is when it is in an upward direction, the higher the 

vulnerability. Similarly, the community’s ability to bounce back over time can be 

represented by the slope of the hypothetical line between damage and recovery, which can 

be characterized as adaptive capacity. The higher the slope, indicated by an upward 

direction, the higher the adaptability. A susceptible system is considered the least resilient 

system, as it has high vulnerability and low adaptability. A recovering system has about the 

same vulnerability and adaptability (close to a straight line but can be above, near, or below 

the mean). A resistant system has low vulnerability and an average adaptability, whereas a 

usurper system has low vulnerability but very high adaptability. In terms of resilience 

ranking, we consider adaptability more important, hence the susceptible state is the least 

resilient, followed by recovering, resistant, and usurper. The same three elements can also be 

displayed in a three-dimensional plot, as shown in Fig. 4, using the same hypothetical values 

in Fig. 3.

While these four discrete resilience states observed in ecosystems provide useful insights 

into recovery patterns and yield additional understanding of resilience, it is unclear if these 

four types of systems exist in real social systems or communities. One of the goals of this 
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paper is to examine whether the responses of a social system can be characterized by the 

four states, which could give additional meaning beyond a continuous index score.

The other major challenge of resilience measurement is validation. The proposed RIM 

model overcomes this issue first by utilizing the K-means clustering method to derive the 

resilience groups of communities, based on the values of the three elements (exposure, 

damage, recovery). Once the resilience groups are identified, discriminate analysis is then 

applied to find out which indicators can be used to characterize or discriminate a county 

based on its resilience ranking. These indicators can be used to indicate adaptive capacity, 

and may include socioeconomic, governmental, and/or environmental variables extracted 

from the literature. Both K-means clustering and discriminant analysis are standard 

multivariate statistical methods that have been applied widely in many fields (Tabachnick 

and Fidell 2000).

Once the discriminant analysis yields satisfactory results and the underlying statistical 

assumptions are met, the same discriminant functions and the same set of indicator variables 

can be utilized to evaluate the resilience rankings of other counties. Thus, the proposed RIM 

approach provides a statistical form of validation, as well as an ability to make inferences to 

other study areas. Furthermore, the probability of group membership values resulting from 

discriminant analysis can be utilized to derive a resilient score on a continuous scale based 

on the method derived in Liu and Lam (1985). Fig. 5 is a flowchart showing the procedures 

used in the RIM approach.

Given that the discriminant analysis results are satisfactory (e.g., high classification 

accuracy, statistical assumptions met), the classification score of a case i (e.g., county) for 

each group j can be computed using the following equation:

(1)

where Cij = classification score of case i for group j; V’s = predictor variables; p = number 

of predictor variables; k = number of groups; and c’s = classification coefficients derived 

from the discriminant analysis. For example, if there are four resilience groups, then there 

will be four C scores for each case. Then, the Mahalanobis distances of the classification 

scores between each individual case to each of the group centroids can be calculated (Nie et 

al. 1975). Under the assumption of a multivariate normal distribution, the classification 

scores, hence the Mahalanobis distances, can be converted into probabilities of group 

membership. A case is assigned to the group that has the highest probability of group 

membership, which is also called the posterior group membership (Tabachnick and Fidell 

2000; Nie et al. 1975).

To convert the resultant group memberships into a continuous resilience index, the authors 

follow the approach pioneered in Liu and Lam (1985), which can be presented in an 

equation form here
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(2)

where I = resilience index; G1 = posterior group membership; G2 = second highest group 

membership; andP(G1) and P(G2) = probabilities of the respective group membership. For 

example, if a county has been classified by discriminant analysis as Group 1 and its second 

highest group is Group 2 with a probability of membership as 0.3, then by applying Eq. (2), 

the final resilience index would be: (1 × 0.7) ) (2 × 0.3) = 1.3. On the other hand, if a county 

has been classified as Group 2 and its second highest group is Group 1 with a probability of 

0.3, then the resultant index would be (2 × 0.7) ) (1 × 0.3) = 1.7. Theoretically, Eq. (2) can 

be extended to include calculations using probabilities of more than two groups. However, 

since the probabilities of group membership of the third and fourth groups were found to be 

very small, this paper simplifies the calculation by using only the first two groups.

Study Area and Data

The RIM approach was applied to evaluate the resiliency of the 52 coastal counties along the 

northern Gulf of Mexico coast in the United States. These counties are considered 

communities, and they belong to the five states: Texas, Louisiana, Mississippi, Alabama, and 

Florida (Fig. 6). The time period for all the data was from 1998 to 2008. The three elements 

for each county were defined as: (1) the exposure to hazards, represented by the number of 

times a community was hit by hurricanes or climate-related hazards; (2) the damage from 

exposure to hazards, represented by the property damage; and (3) the recovery, represented 

by population growth.

Data for exposure and damage for the coastal counties were obtained from the Spatial 

Hazard Events and Losses Database for the United States (SHELDUS) maintained by the 

University of South Carolina (http://www.sheldus.org). The original raw data come from the 

National Oceanographic and Atmospheric Administration’s (NOAA) National Climate Data 

Center (NCDC) (http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf). SHELDUS 

tabulates the data into a county-level data set and adopts a conservative approach to loss 

estimation by always using the lowest loss figure where multiple estimates exist. Five major 

types of coastal hazards were included in this study: coastal (which includes coastal flooding 

and storm surge), flood, hurricane, thunderstorm, and tornado. SHELDUS Version 10.0 was 

used during the study. The hazard event types and their definitions are documented in the 

metadata at the SHELDUS website and can also be found at the NOAA NCDC site. It is 

noted that the SHELDUS database contains more than the original NCDC data and has been 

updated substantially since Version 10.0 released in 2012. The last version released was July 

2013 and contained approximately 70,000 additional records.

To more accurately represent exposure, this study adjusted the number of hazard events by a 

weighting method, because some events such as Hurricane Katrina are far more severe than 

a thunderstorm. The weight of an event type i, wi, was derived as the ratio between the total 

damage of event type i and the total damage of all events:

Lam et al. Page 9

Nat Hazards Rev. Author manuscript; available in PMC 2016 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sheldus.org
http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf


(3)

The exposure for county x was calculated by Eq. (4)

(4)

where Nxi = number of hazards of type i occurred in county x; and BeginDateij and 

EndDateij = begin and end dates of hazard event j of type i, respectively. Using the ratio 

between the total damage of an event type and the total damage of all events in the study 

region to adjust the exposure of a county should not create the multicol-linearity problem. A 

correlation analysis between the exposure [as defined by Eq. (4)] and the damage variable 

for the 52 counties shows a low correlation (r = 0.29) (even though some correlation 

between the two variables should be expected).

The damage variable for each county is the sum of the damage from each event divided by 

the population of the county at the time of the event. The recovery variable was estimated by 

the population growth rate between 1998 and 2008. Population and socioeconomic data 

were obtained from the U.S. Census Bureau at http://www.censtats.census.gov/usa/

usa.shtml. Health-related variables were obtained from the area resource file (ARF) 

produced by the Bureau of Health Professions in the U.S. Department of Health and Human 

Services.

Using population change as an observable proxy to indicate recovery could be challenging. 

Indeed, researchers examining sources of recovery following disturbances have not reached 

consensus on the best way to measure or evaluate recovery (Bevington et al. 2011). 

Recently, Jordan and Javernick-Will (2013) conducted an extensive review of related studies 

and categorized the indicators of recovery applied by researchers into four categories or 

dimensions of recovery: economic, environmental, infrastructural, and social. Indicators of 

environmental and infrastructure include the condition of the built environment and roads, 

and the ability to deliver utilities. Economic recovery could be indicated by a range of 

factors including the number of employees of local business establishments, the number of 

returning or new businesses, and the average household income levels of residents (Lam et 

al. 2009, 2012). Returning population to communities affected by disturbances has been 

used to indicate social recovery (Aldrich 2012; Chang 2010; Finch et al. 2010; Li et al. 

2010). The four categories of recovery are related, for example, with repair to infrastructure 

being necessary to support returning population and businesses (Miles et al. 2012), and the 

recovery of social systems encouraging the rebuilding of infrastructure components (Tierney 

and Oliver-Smith 2012). Hence, the recovery indicator could be a combination of variables 

from different dimensions.
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This study uses population change over time as the indicator of recovery. The rationale is 

that population change over time reflects the wide range of decisions made by individuals 

and businesses to remain in or move away from an area after disturbances. It is a broad 

indicator of recovery that takes into account the rational behavior and choices of residents 

and organizations to locate in communities in the area, even those with higher levels of 

exposure to natural disturbances. This study assumes that these choices are a cumulative 

reflection of the judgments and assessments by stakeholders concerning both the current and 

likely future socioeconomic and physical conditions within their communities. While there 

may be other logical proxies, the authors note that population change observed on its own 

may not necessarily indicate recovery or suggest resilience. These aggregated choices are 

meaningful in the RIM framework in which population change is evaluated in the context of 

exposure and damages from storms and other natural disturbances over multiple years. 

Therefore, examining communities along the Gulf Coast that have been subjected to 

disturbances over time provides an opportunity to observe postdisaster population growth 

and to identify key factors associated with this indicator of recovery.

In a practical sense, since data on population change is likely to be available across regions 

and at different spatial scales, using population change over time as a recovery indicator 

could make future comparison of resilience measurement across space and scales easier.

The exposure and damage data of the 52 coastal counties reveal that the weighted exposure 

values for 1998–2008 ranged from 0.003 (Kenedy County, Texas) to 28.59 (Escambia 

County, Florida). The top five counties that had the highest level of exposure were: 

Escambia, Florida (28.59); Bay, Florida (26.93); Baldwin, Alabama (22.60); Walton, Florida 

(21.53), and Gulf, Florida (20.89). For the property damage variable, the highest property 

damage was found in Plaquemine Parish, Louisiana, with a damage of $213,237 per capita, 

followed by Hancock County, Mississippi ($101,950) and three other parishes in Louisiana: 

St. Bernard ($93,855), Lafourche ($66,560), and Cameron ($40,478). The least property 

damage was found in Willacy County, Texas ($3.45 per capita). The high damage figures in 

Louisiana and Mississippi were undoubtedly affected by Hurricanes Katrina and Rita, which 

hit the region in August and September 2005.

In terms of population growth rate between 1998 and 2008, the top five counties were all 

from Florida: Wakulla (39.7%), Pasco (38.8%), Lee (36.3%), Walton (35.3%), and 

Hernando (32.6%). The lowest population growth rate was found in St. Bernard Parish 

(−44.3%), Louisiana, followed by three other parishes in Louisiana: Orleans, Plaquemine, 

and Cameron. The drastic loss of population in these counties was mostly a result of 

Hurricanes Katrina and Rita.

K-Means Clustering of Resilience Groups

Before conducting the K-means analysis, all three variables (exposure, damage, recovery) 

were standardized by using the median and the absolute average deviation (AAD). Since the 

distribution of the values of the damage variable had outliers, standardization by using the 

median and AAD is more robust than the conventional 0–1 standardization or normalization, 

because the median method is less sensitive to outlier (Tan et al. 2005).
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To test if strong clusters of the data set do exist, 250 random comparison tests were 

generated. Each random test has the three variables randomized, but holding the same mean 

and standard deviation of the three variables. If a data set has strong clusters, the sum of 

squared error of the actual data should decrease more quickly than the random data as the 

number of clusters k goes up. The R script for K-means analysis was used for this part of the 

(Peeples 2011). The results did show that a four-cluster solution was the best, and that the 

four clusters derived did resemble the four states that have been observed in the natural 

system (Fig. 7). The K-mean analysis resulted in 4, 20, 14, and 14 counties in Groups 1–4 

(susceptible, recovering, resistant, and usurper), respectively.

Discriminant Analysis of Indicator Variables

The next question is: What are the underlying socioeconomic and environmental 

characteristics that can predict these resilience rankings? These underlying characteristics 

could serve as indicators of capacity to make the community less vulnerable and recover 

quicker and better. Based on previous research on social vulnerability index (Cutter et al. 

2003; Cutter and Finch 2008), adaptive-capacity index (Nelson et al. 2010a, b), regional 

development indices (Nicholas 1998), resilient indicators (Cutter et al. 2010; Sherrieb et al. 

2010), and the five capitals from Ellis (2000), as well as consideration of data availability 

and quality, we selected 28 variables to serve as indicators of a county’s adaptive capacity 

(Table 1). These variables were grouped into demographic, social, economic, government, 

and environmental capitals. This study then added the health capital, which is an important 

component when considering a community’s vulnerability and adaptive capacity. Toxic 

release inventory data, which could serve as an environmental quality indicator, were 

considered. However, due to the many missing values, the variable was not used. All 

variables were normalized by converting them into either densities per square mile, per 

capita, or percentage (Baker 2009; Li 2011).

The mean elevation of a county was derived by the authors through an elaborated geographic 

information system (GIS) procedure, using the digital elevation data obtained from the U.S. 

Geological Survey website (http://seamless.usgs.gov). The mean elevation was found to 

range from 0 m (0 ft) above sea level in Orleans Parish, Louisiana, the county with the 

lowest elevation in the northern Gulf of Mexico region, to 10.45 m (34.3 ft) above sea level 

in Mobile County, Alabama.

Data for the 4 a priori groups and 28 predictor variables were input to the SPSS statistical 

package for discriminant analysis. Discriminant analysis is often used to derive functions 

that are linear combinations of the predictor variables, using the criterion that the first 

function will discriminate the groups most (i.e., largest variance), followed by the second 

function, and so on, until the function derived is no longer statistically significant. Three 

discriminant functions were derived and found to be statistical significant, which explained 

51.37, 36.53, and 12.1% of the total variance, respectively.

The next step of discriminant analysis is to use the discriminant functions to derive 

classification functions so that each county can be classified into one of the four groups 

based on their probabilities of group membership. The groups predicted by discriminant 

analysis can be compared with the a priori groups, thus providing a means to validate if the a 
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priori groups are accurate. The classification results show that 94.2% of counties were 

correctly classified, or in other words, only 3 out of the 52 counties were misclassified. The 

three misclassified counties were: Terrebonne Parish, Louisiana, which was classified by K-

means as Group 4, but was found to have a distance closer to Group 1’s centroid, hence it 

was downgraded from Group 4 (usurper) to Group 1 (susceptible). Nueces County, Texas, 

was upgraded from Group 2 to Group 4, and Hillsborough County, Florida, was downgraded 

from Group 3 to 2. Fig. 8 maps the final resilience rankings based on the discriminant 

analysis result. Applying Eq. (2), we converted the ranks to continuous resilience indices 

(Table 2). The results show that most of the counties had very low second-highest group 

probabilities (close to 0.0), therefore, there were only minor changes in the resultant 

numerical indices. The final results show that of the 52 counties, 5 were classified as Group 

1 (susceptible), followed by 20, 13, and 15 in Groups 2–4, respectively.

Results and Discussion

The resilience index map (Fig. 8) shows a striking, highly spatially contiguous pattern with 

some minor exceptions. Counties in Florida and Alabama generally had higher resilience to 

coastal hazards than the other three states. The Florida Panhandle area (such as Escambia, 

Santa Rosa, Okaloosa, Walton), as well as Alabama’s Mobile and Baldwin Counties, had 

maintained high population growth, despite having high exposure to coastal hazards such as 

frequent hurricane strikes. On the other hand, none of the counties in Louisiana and 

Mississippi had resilience rankings higher than 2, except Jefferson Parish, Louisiana, a 

suburb of New Orleans, Louisiana, which was classified as Group 4. In Texas, most counties 

were classified as either Group 2 or 3, with only two counties, Galveston and Nueces, 

classified as Group 4, the most resilient. As subsequently discussed, these Group 4 counties 

in Louisiana (Jefferson) and Texas (Galveston and Nueces) were characterized with higher 

socioeconomic capacity (e.g., higher percent of civilian labor force), which made them more 

resilient than their neighboring counties.

The five least-resilient counties included four from Louisiana: Lafourche, Plaquemines, St. 

Bernard, and Terrebonne, and one from Mississippi: Hancock. These counties were severely 

affected by Hurricanes Katrina and Rita in 2005, which might have skewed the analysis. 

Since the period of analysis falls in 1998–2008, the present study might not be able to 

capture the recovery after 2008. However, it is noted that the predictor variables used were 

recorded in 2000, which serve as indicators of preexisting capacity that would influence a 

county’s ability to recover (Sherrieb et al. 2010).

To evaluate the discriminating power of the indicator variables, the potency index of each 

variable was computed (Perreault et al. 1979). The potency index of a discriminating 

variable is a composite, relative measure of the variable’s total discriminating power across 

all significant discriminant functions. It is often used when there are more than two 

significant discriminant functions derived and is computed as follows:

(5)
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where Potencyi = potency index of variable i; n = number of the significant discriminant 

functions; lij = discriminant loading of variable i on function j; and ej = eigenvalue of 

function j. The top 10 variables in descending order were: percent of population over 65 

years old (0.19), percent of the workforce that is employed, percent female-headed 

households, mean elevation, average chronic illness deaths per 10,000 individuals, percent 

population under 5 years old, percent population without a high school diploma, percent 

Hispanic population, percent population living below poverty, and median rent (0.07).

An evaluation of the associations between the groups and the indicator variables show that 

Group 4, the highest resilient group, was highly positively correlated with percent of civilian 

labor force and mean elevation, and the counties in Group 4 were mostly located in the 

Florida Panhandle and Alabama area. Higher percentage of civilian labor force might have 

helped in the rebuilding and recovery process, and higher elevation would make the 

communities less susceptible to coastal hazards.

Group 3 was highly positively correlated with chronic illness death rates, median rent, and 

percent of population over 65 years old, and these characteristics were found mostly in 

counties along the eastern part of the Gulf of Mexico in Florida. Older but wealthier 

societies characterized by higher proportion of retirees would directly or indirectly increase 

the resiliency of the communities to coastal hazards.

Group 2 was highly positively correlated with percent of Hispanic, percent of the population 

living below poverty, percent of population under 5 years old, percent of female-headed 

households, and percent of the population without a high school diploma; and the counties in 

Group 2 were mostly from Louisiana, Mississippi, and Texas. Previous research confirmed 

that household poverty is highest for female-headed households with children that do not 

have other adult household earners (Snyder et al. 2006). High poverty, high percentage of 

population under 5 years old, and high percentage of female-headed households interact 

with each other reciprocally, leading to a community that has lower capacity to bounce back 

from coastal hazards.

Group 1 had five cases, but a closer look of their socioeconomic characteristics show that 

they were very similar to those in Group 2. They were the counties that had been severely 

impacted by Hurricanes Katrina and Rita. They became a distinct group themselves from the 

K-means analysis only because they had much more property damages than others, and thus 

they were assigned the lowest ranking of resilience. In other words, counties in Group 1 

might be considered special cases, since counties in other groups had not experienced such 

catastrophes as Hurricanes Katrina and Rita during 1998–2008.

As in any empirical studies that deal with real-world spatial data, there is uncertainty 

involved when the conclusions are based on analysis of one set of data. Also, there are 

potential violations of statistical assumptions associated with the use of discriminant 

analysis for inferential purposes. For the pilot study here, tests of normality were not 

conducted due to the small number of counties studied. Furthermore, Box-M test of equality 

of variances among groups could not be computed because there were more numbers of 

variables than cases in each group. Nevertheless, the use of a small but relatively 
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homogeneous sample in this pilot study has enabled a thorough demonstration of the 

approach. With further refinements, we expect the same approach can be extended to 

measure resiliency for many other regions and for different types of hazards.

Future studies to refine the RIM approach could be made in several ways. First, this study 

focused mostly on social resilience and has not considered ecological resilience. Ecological 

resilience indicators at the county level are difficult to define and data are not easily 

available. More research in this area is needed. Second, more resilience indicators, such as 

those related to social networks and community capital (Norris et al. 2008; Cutter et al. 

2010; Aldrich 2012), as well as environmental or infrastructural variables such as 

development intensity (Brody et al. 2011) and crime rates (Lam et al. 2009; Sherrieb et al. 

2010), could be added and tested for a larger study area so that more accurate discriminant 

functions could be derived and better future inference could be made. Similarly, different 

growth variables such as business and income growth in addition to population growth could 

also be tested (Chang 2010; Jordan and Javernick-Will 2013).

Conclusions

This paper aims to contribute to the literature by outlining a methodology to evaluate the 

resiliency of communities, and by providing an initial assessment of the resiliency of 52 

Gulf Coast counties. The ultimate goal is to identify existing capacities that are associated 

with a community’s ability to reduce damage and bounce back from coastal hazards. The 

RIM approach, composed of three elements (exposure, damage, and recovery) and two 

relationships linking the three elements (vulnerability and adaptability), emphasizes 

statistical validation and enables inference. Four resilience groups were derived by the K-

means clustering, and 28 variables that served as indicators of community capacity were 

tested to characterize the groups via discriminant analysis. The analysis yielded a 

remarkably high degree of classification accuracy (94.2%), meaning that the 28 variables 

can be used to explain the resiliency of a county. Generally, coastal counties along the 

eastern part of the Gulf of Mexico (Florida and Alabama) were found to have higher 

resilience than the western part of the Gulf (Texas, Louisiana, and Mississippi). High 

percentage of civilian labor force and high elevation were associated with high resiliency to 

coastal hazards, whereas high poverty, low education, and high percentage of female-headed 

households with children were associated with low resiliency.

This pilot study demonstrates that the RIM approach is promising. It also shows that more 

studies are needed to further refine the approach. The main advantage of the RIM approach 

is that it can be applied to analyze community resilience of different study regions, at 

different spatial and temporal scales, or for different types of hazard. We are currently 

applying the RIM approach to measure resilience in various regions including the 

Caribbean, China, and the Netherlands, and for different hazards including drought in 

southwestern United States and earthquake in China. The proxies for the three elements 

(exposure, damage, and recovery) and the social-ecological capacity indicators would be 

varied to suit the different study areas. The most important results of applying the RIM 

approach are a set of metrics that have been empirically validated and their relative weights 

in contributing to the overall resilience of a community (from the classification functions). 
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These metrics and classification functions can be used to evaluate the effects of increasing 

(or decreasing) the value of one indicator (such as elevation or employment in this study) on 

the overall resiliency of a community in the study area. Moreover, the metrics and the 

classification functions derived from one study area can be applied to other study areas to 

evaluate the resiliency of their communities, as long as the two study areas have similar 

characteristics and the statistical assumptions are met. This inferential ability is especially 

useful to places where real damage data are not available. Therefore, with more testing and 

refinements in the future, the RIM approach could serve as a useful tool for measuring and 

identifying indicators that can be promoted to increase resilience for many regions around 

the world.
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Fig. 1. 
Resilience inference measurement (RIM) approach (see detailed description in text)
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Fig. 2. 
Four states of ecological resilience (Liu et al., unpublished data, 2006)
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Fig. 3. 
Generalized relationships between the four resilience states and the three elements in the 

RIM model [the y-axis shows the standardized scores of the three elements from their means 

(i.e., the zero-value line); the hypothetical lines linking the three elements are used to 

indicate the general directions of vulnerability and adaptability; see detailed description in 

text]
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Fig. 4. 
Generalized relationships between the four resilience states and the three elements in the 

RIM model, displayed in a three-dimensional form [the axes show the standardized scores of 

the three elements from their means (i.e., the zeros)]
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Fig. 5. 
Flowchart of the procedures used in the resilience inference measurement (RIM) approach
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Fig. 6. 
Fifty-two coastal counties along the Gulf of Mexico, United States
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Fig. 7. 
Plot of the four K-means clusters on the three elements (solid line = usurper, dashed line = 

resistant, dash-dot line = recovering, dotted line = susceptible)
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Fig. 8. 
Community resilience rankings derived by the discriminant analysis using 28 predictor 

variables
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Table 1

Twenty-Eight Indicator Variables Used in the Discriminant Analysis

Type of variable Acronym Variable Justification

Demographic PCTBLACK Percent African American, 2000 Cutter et al. (2003)

PCTHISPANIC Percent Hispanic, 2000 Cutter et al. (2003)

PCTKIDS Percent under 5 years old, 2000 Cutter et al. (2003)

PCTOLD Percent over 65 years old, 2000 Cutter et al. (2003)

AVGPERHH Average number of people per household, 2000 Cutter et al. (2003)

Social PCTNOHS Percent of the population over 25 with no high school diploma, 2000 Cutter et al. (2003)

PFEMLBR Percent of the workforce that is female, 2000 Cutter et al. (2003)

PCTFHH Percent female-headed households Cutter et al. (2003)

PCTMOBL Percent of homes that are mobile homes, 2000 Cutter et al. (2003)

PCTRENTER Percent of the population that rents, 2000 Cutter et al. (2003)

HOUDEN Number of houses per square mile, 2000 Cutter et al. (2003)

Economic PCTPOV Percent of the population living below poverty, 1999 Cutter et al. (2003)

PCTCVLBF Percent of the workforce that is employed, 2000 Cutter et al. (2003)

MVALOO Median value of owner-occupied housing, 2000 Cutter et al. (2003)

MEDRENT Median rent, 2000 Cutter et al. (2003)

PCTFRMPOP Percent rural farm population, 2000 Cutter et al. (2003)

Government LGFINREVPC Local government finance, revenue per capita, 2002 Brooks et al. (2005)

GENEXPPC Local government finance general expenditures per capita, 2002 Brooks et al. (2005)

PERVOTE Percent of the population that voted in 2000 presidential election, 2000 Cutter et al. (2003)

EXPEDPC Local government finance expenditures for education, 2002 Brooks et al. (2005)

Environmental MELE Mean elevation of the county, 2008 Baker (2009)

Health INFMTR 5-year average infant mortality per 10,000 births, 1998–2002 Nicholas (1998)

CHILLD 3-year average chronic illness deaths per 10,000 individuals, 1998–2000 Nicholas (1998)

DISNWRK Disabled and nonworking labor forces per 10,000 individuals, 2000 Nicholas (1998)

LBWB 3-year total low-birth-weight babies per 10,000 live births, 1998–2000 Nicholas (1998)

HUWNF Households with no fuel used per 10,000 house units, 2000 Nicholas (1998)

HUWNP Households with no plumbing per 10,000 house units, 2000 Nicholas (1998)

MD Non-federal active medical doctors per 10,000 individuals, 2000 Nicholas (1998)

Note: Key references are included as justification.
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Table 2

Derived RIM Resilience Indices of the 52 Counties

County Predicted rank Second highest Second-group probability Resilience index

Cameron, TX 3 3 0.0 3.0

Wallacy, TX 2 3 0.0 2.0

Kenedy, TX 2 2 0.0 2.0

Kleberg, TX 2 2 0.0 2.0

Nueces, TX 4 2 0.31 3.38

San Patricio, TX 2 3 0.03 2.03

Aransas, TX 3 3 0.0 3.0

Calhoun, TX 3 3 0.0 3.0

Matagorda, TX 2 2 0.0 2.0

Brazoria, TX 3 2 0.11 2.89

Galverston, TX 4 4 0.0 4.0

Chambers, TX 3 3 0.0 3.0

Jefferson, TX 2 2 0.0 2.0

Orange, TX 2 2 0.0 2.0

Cameron, LA 2 2 0.0 2.0

Vermillion, LA 2 2 0.0 2.0

Iberia, LA 2 2 0.0 2.0

St. Mary, LA 2 1 0.02 1.98

Terrebonne, LA 1 4 0.15 1.45

Lafourche, LA 1 4 0.01 1.03

Jefferson, LA 4 1 0.01 3.97

Orleans, LA 2 2 0.0 2.0

Plaquemines, LA 1 1 0.0 1.0

St. Bernard, LA 1 1 0.0 1.0

Hancock, MS 1 1 0.0 1.0

Harrison, MS 2 1 0.12 1.88

Jackson, MS 2 1 0.05 1.95

Mobile, AL 4 4 0.0 4.0

Baldwin, AL 4 4 0.0 4.0

Escambia, FL 4 4 0.0 4.0

Santa Rosa, FL 4 4 0.0 4.0

Okaloosa, FL 4 4 0.0 4.0

Walton, FL 4 4 0.0 4.0

Bay, FL 4 4 0.0 4.0

Gulf, FL 4 4 0.0 4.0

Franklin, FL 4 4 0.0 4.0

Walkulla, FL 4 1 0.03 3.91

Jefferson, FL 2 2 0.0 2.0

Taylor, FL 4 4 0.0 4.0
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County Predicted rank Second highest Second-group probability Resilience index

Dixie, FL 2 3 0.01 2.01

Levy, FL 3 3 0.0 3.0

Citrus, FL 3 3 0.0 3.0

Hernando, FL 3 3 0.0 3.0

Pasco, FL 3 3 0.0 3.0

Hillsborough, FL 2 3 0.08 2.08

Pinellas, FL 2 3 0.01 2.01

Manatee, FL 3 3 0.0 3.0

Sarasota, FL 3 3 0.0 3.0

Charlotte, FL 3 3 0.0 3.0

Lee, FL 3 3 0.0 3.0

Collier, FL 3 3 0.0 3.0

Monroe, FL 2 2 0.0 2.0

Note: AL = Alabama; FL = Florida; LA = Louisiana; MS = Mississippi; TX = Texas.
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