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A B S T R A C T   

In search of new insights into the dynamics of hazard resilience, this study assessed the temporal changes of 
community resilience to the drought hazard in the south-central U.S. The study hypothesized that over time 
counties with more affluent socioeconomic conditions and more diverse agriculture would improve their resil
ience while counties with poorer socioeconomic conditions and heavy reliance on agriculture decreased their 
resilience, thus widening the regional disparities in community resilience to the drought hazard. The study 
applied the Resilience Inference Measurement (RIM) framework to measure the resilience levels of the 503 
counties of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. Using data of Year 2000, the RIM model 
selected 10 variables as resilience predictors with a 67.9% classification accuracy and assigned a resilience level 
to each county. The variables selected in the RIM model are related to the economic performance in the agri
cultural sector, socioeconomic well-being, and health. The derived discriminant functions from the RIM model 
were then used to estimate the resilience levels in 2005, 2010, and 2015. Over the 15-year period, 262 counties 
across the study area improved their resilience, whereas 48 counties, mostly in the Texas High Plains, experi
enced a decrease in their resilience level. The results support the hypothesis and suggest a widening gap in 
resilience levels among counties. These results increase our understanding of the complex process underlying 
communities’ response to the drought impacts.   

1. Introduction 

The risks associated with droughts have long been recognized by 
farmers, landowners, community managers, nongovernment organiza
tions, and local, state, and federal government agencies [1–3]. A 2011 
survey of longtime residents (10, 15, and 19 years) of the U.S. Gulf of 
Mexico Coast counties (sample size 3856) about their perceptions of 
changing climate shows that 54% of respondents perceived an increase 
in the number of droughts over the time of their residence, despite the 
fact that only 22% of respondents perceived an increased number of 
hurricanes, 24% perceived an increase in flooding frequencies, and only 
22% believed in anthropogenic climate change [4]. The National 
Oceanic and Atmospheric Administration’s (NOAA) National Weather 
Service (NWS) Storm Events Database contains 50,967 records of 
drought events in the USA for the period of 1996–2016, which amounts 
to 2427 events per year, resulting in an average annual cost of $1684 
million U.S. dollars (2016 Consumer Price Index CPI-adjusted) [5]. 

Despite the widespread recognition of the drought threat, with a few 
exceptions (e.g. Refs. [6,7]), the resilience of human communities to the 
effects of drought has rarely been studied. Community resilience refers 
to “the ability to prepare and plan for, absorb, recover from, and more 
successfully adapt to adverse events” [8,9]. Community resilience is 
often associated with maintaining functionality after disturbance based 
on desired performance goals [10]. Such performance goals can include 
population or economic growth, agricultural productivity, or other 
measures of community well-being. Furthermore, community resilience 
is dynamic and varies both spatially and temporally. Understanding the 
dynamics of resilience is critical to the ultimate goal of improving 
resilience [11–13]. However, studies on the dynamic changes in resil
ience levels remain limited. Mihunov et al. [6] assessed the community 
resilience to drought hazard in the south-central USA at one time point 
(Year 2000). Building on this previous study, the objective of this 
research is to assess the temporal changes of community resilience to the 
drought hazard in the same region at four time points: 2000, 2005, 
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2010, and 2015. This study will apply the Resilience Inference Mea
surement (RIM) model for resilience assessment, and in addition to 
commonly used socioeconomic variables, variables related to the 
food-energy-water (FEW) nexus such as agriculture, will be included and 
tested as potential indicators of resilience. 

Specifically, our research questions are: do we see a change in 
drought resilience in the region over time? Where and why do some 
counties experience an increase while others suffer a decrease? Do we 
see a widening gap in resilience levels among counties, i.e., increasing 
regional disparity in drought resilience, over time? Mihunov et al. [6] 
confirmed that counties with more affluent socioeconomic conditions 
generally have higher resilience to drought. This study will test the 
hypothesis that more affluent counties will continue to improve their 
resilience, whereas counties with poorer socioeconomic conditions will 
decrease their resilience over time, leading to a widening gap in resil
ience levels among counties in the study area. Furthermore, our second 
hypothesis is that given the potential neighborhood effects, counties 
near high-resilience counties will increase their resilience, whereas 
counties neighboring low-resilience counties will decrease their resil
ience, thus increasing the regional disparity of resilience to drought 
hazards. 

The study area includes 503 counties in Arkansas, Louisiana, New 
Mexico, Oklahoma, and Texas. This area also coincides with the 
boundary of U.S. Environmental Protection Agency [14] Region VI. 
These 503 counties vary in drought threat levels, natural ecoregions, 
agricultural productivity, urban development, and socioeconomic 
characteristics. According to Rohli et al. [7]; the counties of the study 
area experienced on average 139 months of drought during 1975–2010, 
which amounted to 32.2% of all months of the time period. During that 
time, drought damage totals amounted to $15.3 billion in 2011 
CPI-adjusted US dollars [7]. This damage value mostly consists of crop 
losses, with property damage being only a small proportion, mainly due 
to large-scale agricultural production in the region [6,7]. Studying the 
temporal changes in resilience in this region will provide new insights 
into the key factors affecting the communities’ capacity to absorb stress 
and recover from damage, not only for this region but also for other 
regions facing similar drought threats. 

2. Background 

According to Wilhite et al. [15]; droughts are best defined by their 
impacts, categorized into four main types – meteorological, agricultural, 
hydrological, and socioeconomic. The impacts are interconnected and 
accrue with time (Fig. 1). These operational definitions of drought, 
introduced by Wilhite and Glantz [16]; provide a straightforward and 
actionable categorization for both researchers and practitioners. We will 
follow this categorization in our review of the recent drought research, 
with an emphasis on studies of socioeconomic drought. 

Many studies have been conducted in the field of meteorological 
drought. Among the most recent ones are historical drought re
constructions using drought indexes, and projections of future drought 
occurrences based on global climate modeling. For example, Liu et al. 
[17] reconstructed historical cases of drought and evaluated the risk of 
future droughts for Blue River Basin, Oklahoma, using Standardized 
Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), and 
Standardized Runoff Index (SRI). Diffenbaugh et al. [18] found that the 
strong positive correlation between drought severity and temperature in 
historical data for California invites concern for future drought based on 

GCM projections of precipitation and temperature. Ganguli and Ganguly 
[19] found that “spatial coverage of extreme meteorological drought in 
the recent years (post-2010) [in the USA] exceeds that of the iconic 
droughts of the 1930s (the Dust Bowl era), and the 1950s” and that 
“drought persistence remains relatively stationary over the last half 
century.” 

Several studies conducted in the field of agricultural drought focus 
on farmers’ livelihood resilience, crop modeling, and projected climate 
change impacts on agriculture. Ranjan [20] created an economic model 
to study farmers’ vulnerability to drought, with results suggesting that 
more profitable crops are usually water intensive and costly to plant, 
which leads to trade-offs in choosing crops between accumulating 
earnings and saving groundwater. Yu et al. [21] used crop modeling to 
simulate rice, maize, and wheat yields assuming rainfed (no irrigation) 
and baseline (irrigation demands fully met) scenarios under historical 
climate conditions (1955–2014) and nine GCMs ensemble projections 
(2014–2100). They found that future drought induced yield loss under 
each representative concentration pathway (RCP 2.6, 4.5, 8.5) is higher 
than that of historical scenario, and is much higher under rainfed than 
baseline irrigation scenario. Steele et al. [22] conducted a review of 
possible climate change impacts on local agricultural systems in the 
southwestern USA and suggested several adaptation strategies for 
farmers and policymakers. 

Technologically advanced modern agriculture in the USA operating 
under complex supply chains complicates the predictability of drought 
impacts on the production and marketing process [23]. Risk manage
ment tools available to farmers include production, marketing, and 
future contracts, as well as the Federal Crop Insurance Program (FCIP) 
and other farm bill programs [24]. To manage the risk of market vola
tility, a farmer can enter a forward (production and marketing) contract 
to fix product prices [25,26]. Marketing contract specifies the quantity 
and quality of the crop to be either delivered at a future date for a fixed 
price or rated according to a future market price. This way in
termediaries would share some price risks with farmers [23]. A futures 
contract is “a forward contract traded under the bylaws of an organized 
commodity exchange,” with highly standardized methods of trading and 
delivery terms [27]. These adaptation strategies influence the farmers’ 
resilience and generate economic data suitable for quantitative research. 

Hydrological drought has also been examined in the scholarly liter
ature. Although water supply systems are designed to withstand a range 
of weather-induced impacts, droughts lasting over a year are more 
straining since they include the period of reservoir/groundwater 
recharge (i.e., winter), creating chronic stress into the following summer 
[28]. Typical policy response to hydrological drought involves restrict
ing water use, assisting water transfers, assigning temporary water 
rights, purchasing water rights or permits to preserve water, and issuing 
grants and loans to public water-supply systems (Fontaine et al., 2014). 

Less scholarly attention has been devoted to socioeconomic drought; 
research on community resilience and social vulnerability to drought 
hazard remains limited. Furthermore, the temporal changes in drought 
resilience have rarely been studied. Murthy et al. [29] developed a 
composite index for measuring agricultural drought vulnerability by 
aggregating soil, irrigation, farms, rainfall, precipitation, and remote 
sensing vegetation data into exposure, sensitivity, and adaptive capacity 
components of vulnerability. Several studies were devoted to the 
development, testing, and improvement of Multivariate Standardized 
Reliability and Resilience Index, which aimed to quantify socioeconomic 
drought through measuring the ability of hydrological reservoirs to 
satisfy societal water demand [30–32]. Tortajada et al. [33] analyzed 
the 2011–2016 California drought impacts on food security and state’s 
adaptations and found that despite the severity of drought, California’s 
food security was unaffected. 

There is a need to assess resilience to socioeconomic drought beyond 
the agricultural sector, such as communities’ ability to mitigate damage 
and experience socioeconomic growth, at various spatial and temporal 
scales using robust scientific methods. Mihunov et al. [6] assessed the Fig. 1. Operational definitions of drought [15].  
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community resilience to drought hazard of all 503 counties of Arkansas, 
Louisiana, New Mexico, Oklahoma, and Texas at one time point (Year 
2000). The study confirmed that higher resilience is associated with 
higher socioeconomic condition of the counties, with a concentration of 
high resilience counties found in the ecotone between humid (Eastern 
Temperate Forests) and arid (Southern Semiarid Highlands or Great 
Plains) climate regions. This study extends the analysis to examine the 
temporal changes using a similar methodology but adding the 
FEW-nexus related variables to better explain the dynamic changes in 
resilience to socioeconomic drought. 

3. Data and methods 

3.1. The Resilience Inference Measurement framework 

The Resilience Inference Measurement (RIM) framework was 
applied to conduct the temporal assessment. RIM is a relatively new 
model for assessment of community resilience that has been applied to 
measure resilience to coastal hazards in the northern Gulf of Mexico 
counties [9,12,13], Lower Mississippi River basin [34,35], northeastern 
USA from Hurricane Sandy [36], and the Caribbean countries [37], 
earthquakes in China [38], and drought in the south-central USA [6]. A 
recent study that analyzed 174 refereed journal articles on disaster 
resilience measurement published from 2005 to 2017 found that the 
RIM framework is among the few available resilience indices that pro
vide both empirical validation and specific adaptive strategies [10]. 

In the RIM framework, community resilience is based on the re
lationships of hazard level, damage, and recovery (Fig. 2). Hazard level 
is the incidence or intensity of the impact, damage is monetary or human 
loss resulting from the hazard, and recovery is return of population or 
economic growth. The relationship between damage and hazard level is 
defined as vulnerability, whereas the relationship between recovery and 
damage is considered adaptability. Vulnerability refers to community’s 
susceptibility to higher damages given the same level of hazard as other 
communities; thus, a community is considered to have low vulnerability 
when it is subjected to a high hazard level but sustains low damage. 
Adaptability refers to a community’s capacity to recover from damage, 
thus a community is considered to have high adaptability when it re
covers quickly after sustaining high damage. The relationship between 
adaptability and vulnerability is defined as resilience. The RIM frame
work considers two dynamic underlying processes of resilience — 
mitigation and adaptation. These processes are defined as a societal 
response, i.e. actions taken in the recovery stage to lessen the potential 
hazard threat (mitigation) or reduce potential damage (adaptation), 
either of which enhance resilience in the next resilience cycle. 

The resilience level of a community (county) is assessed through 
classifying its pattern of hazard level, damage, and recovery into one of 
the four categories, and from low to high resilience, they are susceptible, 
recovering, resistant, and usurper. Given the same level of hazard in
tensity, susceptible communities are characterized by extensive damage 
and slow recovery, whereas usurper communities have low damage but 
high capacity for recovery. Recovering and resistant communities fall in 
between, with the former generally having average damage and recov
ery and the latter being resistant to hazard threat and enduring low 
damage. This four-level classification is borrowed from the ecological 
literature [39,40] and has been tested extensively in previous studies [9, 
34,37,38]. 

The RIM framework employs a two-step statistical procedure to es
timate the resilience level of a community. The method ensures its 
empirical validation with real-world hazard threat, damage, and re
covery data. First, k-means clustering [41] provides an a priori resilience 
classification based on the three dimensions (hazard, damage, and re
covery). The k-means classification assigns each county to one of the 
four resilience levels: susceptible, recovering, resistant, and usurper (i. 
e., group 1–4). In the second step, through shrinkage discriminant 
analysis (SDA) [42], the assigned resilience level is validated using a set 
of socioeconomic and FEW-nexus variables. The posterior classification, 
predictions for the consecutive time periods, as well as classification 
accuracy (agreement between a priori and posterior classifications) are 
then calculated. Fig. 3 is a flowchart showing data inputs, statistical 
procedures, and output results of the RIM framework for this temporal 
study. 

Application of statistical methods requires us to consider their as
sumptions. We used the k-means cluster analysis procedure in SPSS 
Statistics [41]; and this procedure does not require data to be normally 
distributed. However, it is important to standardize the input variables 
into a range of 0–1 before the procedure. Discriminant analysis is a 
statistical inferential technique, which requires the assumptions of 
normality of the data and equality of variances among groups. However, 
the technique is quite robust and is considered reliable under minor 
violations. In this study, visual inspection of the Q-Q plots shows that the 
data are distributed symmetrically with minor skewness. The Box-M 
test, which is a test of variance homogeneity, shows an F value of 9.87 
and p < 0.05; thus, the variances between groups are not equal, likely 
due to the test’s sensitivity to large number of cases and even small 
departures from homogeneity or normality [41]. 

3.2. Data collection and analysis steps 

As portrayed in Fig. 3, we first collected hazard, damage, and re
covery data, which are the input variables for the k-means clustering 
procedure. The hazard variable is the total number of weeks of severe 
drought in each of the 503 counties in the 2000–2015 period [43]. The 
detailed description and justification for the data source can be found in 
Mihunov et al. [6]. The damage variable is the total amount of insured 
crop losses (indemnity payments) per capita, which was aggregated by 
the authors annually by county using the records that are designated as 
either “drought” or “failure of the water supply for irrigation” [44]. In 
each year, losses attributed to “all other counties” of the specified state 
for the specified cause of loss were divided equally among the counties 
that lacked recorded damage attributed directly to the county. Then, the 
annual records were summed and divided by population count in 2000. 
County-level population change rate, tabulated by the authors as the 
difference in population between 2000 and 2015 divided by the popu
lation in 2000, was used as the recovery variable [45,46]. The study then 
used the county-level hazard, damage, and recovery data to estimate the 
a priori k-means groupings for each of the 503 counties. Table 1 lists the 
average values of hazard, damage, and recovery variables in each 
resilience group based on k-means clustering. 

In the second step, the output from k-means analysis (a priori k- 
means groupings) was used as a target variable for the correlation- 
adjusted T (CAT) score variable selection and SDA. A total of 52 in
dicators related to socioeconomic and FEW characteristics for the year 
2000 were used as independent variables in SDA (Table 2). SDA pro
duced posterior groups and a classification accuracy estimate (agree
ment between prior and posterior groups). Discriminant functions from 
the SDA were then used to estimate the resilience level of each county at 
the three consecutive time points using the data at respective time 
points. 

The 52 resilience variables used in the SDA model training were from 
the year 2000 (preexisting conditions). Table 2 lists the variables, along 
with their respective abbreviated data sources; the detailed data sources 
are listed in table’s footnotes. These variables are related to Fig. 2. The resilience inference measurement framework [9].  
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socioeconomic, agricultural, water, and energy characteristics of the 
counties. 

The socioeconomic variables were similar to the ones commonly 
used and repeatedly tested in the resilience and vulnerability literature 
[50]; see also [6,9,34,35,51–53]. Among them are variables related to 

economic performance and income (labor force, unemployment, 
poverty rate, household and per capita income levels, female labor force, 
agriculture and transportation occupations), housing (renting house
holds, housing in urban areas), education (no high school diploma), 
household size, population of vulnerable age (over 65 and under 5 years 
old), as well as community and civic engagement (nativity to home state 
and election participation), and health (civilians with disabilities). 

Including agriculture, energy, and water variables in community 
resilience assessment is considered innovative. These variables are not 
common in resilience and vulnerability literature despite being highly 
relevant to drought resilience and closely related to the FEW nexus. 
FEW-nexus studies consider the influence of the associations, de
pendencies, and competition for resources between the water-food, 
energy-water, water-energy, and energy-food systems [54]. Competi
tion for scarce water resource between all FEW nexus actors during 
socioeconomic drought makes it most devastating among the four types 
(Fig. 1; [15]). Variables, such as differences in farmer’s resources and 
farming practices and differences in water and energy consumption, are 
thus expected to be closely related to socioeconomic drought [54–61]. 

Fig. 3. Flowchart of the procedures used in the Resilience Inference Measurement model.  

Table 1 
Mean levels of 2000–2015 hazard, damage, and recovery variables in each 
resilience group derived from k-means analysis.  

k-means group Hazard (Weeks 
in drought) 

Damage (crop 
indemnities, $ per 
capita) 

Recovery 
(Population 
change) 

Susceptible (34 
counties) 

277.18 19,305.67 � 0.11 

Recovering (205 
counties) 

110.71 80.75 0.01 

Resistant (156 
counties) 

284.56 1800.73 � 0.01 

Usurper (108 
counties) 

251.59 474.42 0.34  

Table 2 
List of 52 variables close to Year 2000 used in the validation of the resilience level.  

Variable Source Variable Source 

Agriculture  Socioeconomic  
% family and individual farm USDA NASS 1997c % of civilian labor force BLS-CPS 2000a 

% farms in federal programs Unemployment rate 
% farms in fed. conservation, wetlands progr. % below poverty Census 2000a 

% farms paying interest, non-real estate % born in this state of residence 
% farms paying interest, real estate % employed in agriculture, forestry 
% farms with animal expenses % employed in transportation, public utilities 
% farms with chemical expenses % households renting 
% farms with contract labor % of female in the labor force 
% farms with feed expense % over 25 with no high school 
% farms with hired labor Avg household size 
% farms with rent, cash, land, buildings exp. Per capita income 
% farms with seeds and plants expense % over 65 years old PEP 2000a 

% tenant farm operations % under 5 years old 
Agricultural land, buildings - asset value, $/acre Median household income SAIPEa 

Avg expense on taxes, $/farm % housing in urban areas (popul. > 50,000) SF1b 

Avg fuel expense $/farm % of civilian labor force with disabilities SF3b 

Avg operating expense, $/farm % voted in the election of year SAGEa 

Commodity totals - sales, $/farm Energy  
Number of farms per square mile % housing, bottled, tank, LP gas heating fuel Census SF1 2000b 

Water  % housing, electricity as heating fuel 
Industry withdrawals, % ground water USGS 2000c % housing, no heating fuel 
Industry withdrawals, Mgal/d per 1000 popul. % housing, oil, keros., coal, coke, other heat. 
Irrigation, % ground water withdrawals % housing, solar energy heating fuel 
Irrigation, Mgal/d per 1000 irrigated acres % housing, utility gas heating fuel 
Public supply, % ground water withdrawals % housing, wood heating fuel 
Public supply, Mgal/d per 1000 population Annual crude oil withdrawals, bbl per capita USDA ERSc 

Average impervious rate 2014c Annual natural gas withdr., 1000 ftc per cap.  

a U.S. Census Bureau’s Census 2000, Population Estimates Program (PEP) 2000, Small Area Income and Poverty Estimates (SAIPE) 2000, Bureau of Labor Statistics- 
Current Population Survey (BLS-CPS) 2000, and SAGE Publications 2000 variables were acquired from the U.S. Census Bureau USA Counties Data File Downloads 
(2014) [45]. 

b Census Summary Files (SF1, SF3) 2000 from the American Fact Finder [46]. 
c Agriculture, energy, and water variables from US Department of Agriculture [47,48] and US Geological Survey [49]; impervious rate (% impervious surface), 

tabulated by the authors from the U.S. Geological Survey data. 
Sources: 
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Consideration of these variables could make the final prediction model 
more interpretable and relevant to the stakeholders and policymakers. 

The damage variable [44] as well as agricultural variables [47] were 
adjusted for inflation to 2015 U.S. dollars by the authors using the 
Federal Reserve Bank of St. Louis Economic Data [62] average annual 
consumer price (CPI) index for a given year. 

3.3. Variable importance ranking and selection 

Using the “sda" package (and CAT Score Variable Selection, version 
1.3.7 [63], in R [64]), the 52 socioeconomic and agriculture, water, and 
energy variables (Table 2) were ranked by their importance, and even
tually 10 variables were selected based on the “higher criticism” statistic 
[65–68]. SDA is a form of regularized linear discriminant analysis (LDA) 
that can be used to select (shrink) the best set of variables for the final 
model [42]. An advantage of this method is that SDA reduces overfitting 
by penalizing the complexity of the model. The regularization parame
ters are estimated using the James–Stein type shrinkage rules for the 
correlations (the ridge-type estimator), the variances (the shrinkage 
estimator), and the proportions (the frequency estimator) to minimize 
the mean squared error. A value of 0 implies no shrinkage and 1 rep
resents complete shrinkage. The optimal shrinkage intensity values can 
be specified by the analyst, or they can be estimated from the data 
through minimizing the mean squared error. In this study, the optimal 
shrinkage intensity was estimated to be fairly low, meaning lower 
penalization. The final model was optimized using these parameter 
values: frequencies (0.022), variance vector (0.027), and correlation 
matrix (0.0417). 

The CAT scores method computes the t-scores between the mean of 
each group and the pooled mean. The method is especially useful for 
variable selection in the presence of multicollinearity among the inde
pendent variables. Another advantage is interpretability; the CAT scores 
method assigns all variables with an order of importance as well as 
characterizes their contribution in each group, using the distance of the 
group centroid from the pooled mean. The number of variables chosen 
in the model is determined by the Higher-Criticism statistic. In this 
study, the maximum Higher-Criticism value was found to be at 2.17 
when 10 variables were selected. Finally, using the set of 503 cases and 

10 variables from Year 2000, the SDA prediction model was developed 
(i.e., the discriminant functions). 

3.4. Time series data collection and resilience score estimation 

Data for the 10 resilience variables selected from the SDA model 
were collected for the three consecutive time points (2005, 2010, 2015), 
so that their respective resilience levels can be calculated using the 
discriminant functions derived from the Year 2000 data. Table 3 lists the 
data along with their respective means, standard deviations, and data 
sources for all four time points. 

In working with disparate data across a relatively large geographical 
region and at multiple time periods, missing values in certain variables 
are expected, thus a plausible approach to handling them becomes 
necessary. We utilized multiple imputations method, a robust alterna
tive to imputations of the mean or listwise deletion, with the help of the 
“Multivariate Imputation by Chained Equations” (MICE) package (v. 
2.46; [70]) in R. The package utilizes predictive mean matching, a 
general purpose semi-parametric imputation method that will preserve 
the data distribution such as nonlinear relations [69]. This is done by 
modeling a distribution for each missing entry and drawing a plausible 
value from the distribution [70]. 

In this study, data for the Years 2000, 2010, and 2015 had only up to 
five out of 503 missing values in several variables, and the default 
method in MICE was used to impute those values. However, for 2005, 
five of the 10 variables selected in the final model (% employed in 
agriculture, % over 65 years old, % civilians with disabilities, median 
household income, average household size) had 245 missing values 
(American Community Survey 2007 3-year estimates; [46]). In addition, 
% civilian labor force had 249 missing values, and agricultural asset 
value had two missing values. To avoid skipping 2005 and provide 
temporal assessment of community resilience at even time intervals, the 
multiple imputations method was used to produce imputations for the 
seven variables. With the help of the quickpred() function in MICE, 52 
variables from Table 1 (Year 2000) were used as additional predictors 
for the imputations in these six variables, as opposed to the default 
method in MICE where the only predictor for each variable is the vari
able itself. This method greatly improves the imputation results. 

Table 3 
Means, standard deviations, and data sources of the 10 variables at four time points.   

2000 2005 2010 2015 

mean sd mean sd mean sd mean sd 

% employed in agriculture 9.17 7.47 9.04 6.05 9.13 7.5 10.18 7.87  
Census 2000 ACS 2007 3yr ACS 2009 5yr ACS 2015 5yr 

% farms in federal programs 0.26 0.25 0.27 0.22 0.3 0.27 0.33 0.27 
USDA NASS 1997 NASS 2002 NASS 2007 NASS 2012 

% over 65 years old 14.88 4.1 15.13 4.04 15.65 4.2 16.72 4.58  
Census PEP 2000 ACS 2007 3yr Census 2010 ACS 2015 5yr 

% of civilians with disabilities 22.89 4.3 16.37 4.68 15.24 4.76 17.18 4.43 
Census SF3 2000 ACS 2007 3yr ACS 2012 5yr ACS 2015 5yr 

Number of farms per sq. mile 0.96 0.73 0.94 0.75 1.01 0.8 0.98 0.82 
USDA NASS 1997 NASS 2002 NASS 2007 NASS 2012 

Agricultural assets, $/acre 1375.17 1419.53 1580.08 2689.24 2076.41 3359.71 2174.95 1502.85  
USDA NASS 1997 NASS 2002 NASS 2007 NASS 2012 

Avg expense on taxes, $/farm 1902.47 1408.41 2226.74 1707.98 2290.63 1638.38 2378.22 1700.42 
USDA NASS 1997 NASS 2002 NASS 2007 NASS 2012 

Median household income 32,072.92 7164.89 37,449.12 9587.85 39,347.21 9533.19 43,748.41 10,615.05  
SAIPE 2000 ACS 2007 3yr SAIPE 2009 ACS 2015 5yr 

Avg household size 2.6 0.21 2.61 0.26 2.62 0.25 2.65 0.27  
Census 2000 ACS 2007 3yr ACS 2010 5yr ACS 2015 5yr 

% civilian labor force 45.53 5.39 57.5 6.86 47.04 6.49 56.19 7.25  
BLS-CPS 2000 ACS 2007 3yr ACS 2012 5yr ACS 2015 5yr 

U.S. Census Bureau’s Census 2010, Small Area Income and Poverty Estimates (SAIPE) 2009 were from the U.S. Census Bureau USA Counties Data File Downloads 
(2014) [45]. 
American Community Survey (ACS) 2007 3-year, 2009, 2010, 2012, 2015 five-year estimates from the American Fact Finder [46]. 
Agricultural variables from USDA [47]. 
Sources (for Year 2005, 2010, 2015): 
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4. Results 

4.1. Spatiotemporal variation of hazard and damage 

To provide an overview of the spatial-temporal patterns of hazard 
threat and damage in this region, hotspot maps for the two variables 
(Fig. 4) were created for the time intervals of 2000–2005, 2005–2010, 
and 2010–2015, using the 95% confidence level in the “Hot Spot 
Analysis” tool in ArcGIS Desktop (Version 10.5; [71]). 

In the first period (2000–2005), hot spots for drought incidence 
occurred in New Mexico and western Texas, including the southern part 
of the Texas High Plains and Midland-Odessa area, with the highest- 
incidence county in Rio Arriba, New Mexico (north of Santa Fe). In 
the second period (2005–2010), high drought incidence is observed in 
central and southern Texas, including large metropolitan areas of 

Houston, Dallas, Austin, and Corpus Christi. The highest incidence in 
this time period was found in Uvalde County, Texas, west of San Anto
nio. In the third period (2010–2015), a large part of the study area, 
including all of New Mexico, all of the Texas High Plains, and western 
Oklahoma, were affected, reflecting the devastating 2012 drought [72]. 
The highest incidence in that period occurred in Kendall County, adja
cent to metropolitan San Antonio. 

The hotspot patterns of damage were similar in the first two five-year 
periods. In the third five-year period (2010–2015), the damage hotspot 
had the same “center” but smaller “radius.” The damage hotspot was 
centered on the agricultural region of the Texas High Plains including 
Amarillo, Lubbock, Midland-Odessa, Wichita Falls, and Abilene 
counties. Counties with the highest per capita damage values were 
Glasscock in Texas in the first two periods and Cimarron (Oklahoma) in 
the third period (2005–2010). Moreover, the mean values of drought 

Fig. 4. Hotspot maps of hazard level: (a) 2001–2005 (b) 2006–2010 (c) 2011–2015 and damage (d) 2001–2005 (e) 2006–2010 (f) 2011–2015.  

V.V. Mihunov et al.                                                                                                                                                                                                                             



International Journal of Disaster Risk Reduction 41 (2019) 101302

7

incidence and damage increased in each five-year period, peaking in the 
last five-year period, coinciding with the 2012 Texas drought (Table 4; 
[72]). 

These hotspot maps show clearly that while the level of drought 
hazard changed spatially in each period, counties that endured high 
damage remained similar. Glasscock, Borden, and Lynn counties in 
Texas, as well as Cimarron County in Oklahoma, endured the top-10 
highest damage in all three five-year periods (not listed in the tables). 
Martin, Hall, Foard, and King (Texas) were the counties that endured 
top-10 highest damage twice. Val Verde, Real, Kerr, Edwards, and 
Maverick (Texas) were subjected to top-10 highest drought incidence 
twice – in 2005–2010 and 2010–2015. All top-10 highest drought 
incidence counties of 2000–2005 were in New Mexico, and no county 
was subjected to the top-10 highest incidence three times. 

4.2. Ranking and contribution of the indicators of community resilience 

SDA resulted in a 10-variable solution with a classification accuracy 
of 67.9% (65.8% with cross validation). Fig. 5 shows the CAT for each 
variable selected in the final model in order of importance. The CAT 
scores estimate an individual variable’s contribution in discriminating 
the groups, after removing all other variables’ effects. In Fig. 5, CAT 
scores are portrayed as distance between a group centroid and a pooled 
mean in either the positive or negative direction, to represent the 
contribution of the variable in each group. 

The CAT scores are revealing; they show that counties with the 
lowest resilience (i.e., in the susceptible category) had high percentages 
of people employed in agriculture and people over 65 years old, more 
farm recipients of federal programs, lower value of agricultural assets, 
lower numbers of farms per square mile, and higher tax expenses per 

farm operation. Counties assigned as “recovering” had relatively high 
values of agricultural assets and higher percentages of adults with dis
abilities, but relatively low levels of the other variables. Resistant 
counties had relatively low values of agricultural assets and high per
centages of population over 65, and notably few farms per square mile. 

The most resilient (i.e., “usurper”) counties had relatively high 
numbers of farms per square mile, but low percentages of the population 
employed in agriculture. In addition, socioeconomic affluence is rela
tively high in these counties, with high median household income, 
young populations, and smaller disabled populations in the civilian 
labor force. This suggests that even though counties of highest resilience 
have higher density of farms, agriculture may not be a primary source of 
economic productivity in these counties. 

In addition, the descriptive statistics for the 10 variables (shown in 
Table 3) indicate that a growth of agricultural land and buildings asset 
value is evident at each five-year period, but with only a slight increase 
in percentage of agricultural employment in 2015 and a slight increase 
in percentage of older population. Median household income grew as 
well. There was a slight increase in percentage of farms receiving of 
federal government aid, as well as a gradual growth of farms’ expense on 
taxes from 2000 to 2015. At each time point the number of farms per 
square mile remained near 1.0. 

4.3. Spatial and temporal variation in community resilience 

Fig. 6 shows the final (posterior) resilience levels at each time point 
and their temporal changes. At the starting point (Year 2000; Fig. 6a), 
usurper counties were found mostly in or around metropolitan areas 
while susceptible counties were located in the Texas High Plains. 
Recovering counties was the largest group and were concentrated in 
Arkansas, Louisiana, eastern Oklahoma, and Texas. Resistant counties 
made up the rest of the study area. These posterior resilience levels are 
largely consistent with the results from Mihunov et al. [6]. 

In the first five-year period (2000–2005), many recovering counties 
in the eastern part of the study area improved their resilience level by 
one or two categories, with more counties classified at resistant and 
usurper levels (Fig. 6e). Furthermore, improved resilience was found to 
be mostly in counties adjacent to those with high baseline resilience. 
Notably, New Mexico was a hot spot of high drought incidence in 
2000–2005, but many counties in that state showed an improvement in 
their resilience levels. On the contrary, many counties in the Texas High 
Plains suffered a decrease in their resilience levels, leading to more 
susceptible counties than in the baseline year. The 2005 results should 
be interpreted with caution because of the many imputed data points 
used in that year. 

In the second period (2005–2010, Fig. 6f), resilience in many 
counties of Arkansas, Louisiana, eastern Oklahoma, and New Mexico 
declined by one or two levels, whereas six counties in the Texas High 
Plains (King, Kent, Borden, Glasscock, Gaines, and Yoakum) decreased 
in resilience by three levels (from usurper to susceptible). 

In 2010–2015, resilience in 121 counties across the study area 

Table 4 
Descriptive statistics of exposure and damage variables in 2001–2005, 2006–2010, 2011–2015.  

Variable Year N Minimum Maximum Mean Std. Dev 

Exposure (weeks in drought) 2000–2005 480 3 
18 counties in AR, LA, OK, TX 

166 
Rio Arriba, NM 

28.13 32.53 

2005–2010 503 4 
Marion, Baxter, AR 

176 
Uvalde, TX 

53.57 36.18 

2010–2015 503 18 
St Helena, LA 

235 
Kendall, TX 

126.55 61.05 

Damage (crop indemnity, 
$ per capita) 

2000–2005 474 0.0004 
Bernalillo, NM (Albuquerque) 

14,147.55 
Glasscock, TX 

304.23 1102.46 

2005–2010 503 0.00004 
Bernalillo, NM 

12,154.47 
Cimarron, OK 

416.64 1178.22 

2010–2015 503 0.0002 
Bernalillo, NM 

54,481.69 
Glasscock, TX 

1444.74 4858.93  

Fig. 5. Top-10 variables selected in the model in the order of importance. 
Horizontal lines represent distance of Centroid from Pooled Means or CAT 
scores (decorrelated t-statistic). 
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improved. Despite the intensity of drought and damages inflicted, many 
counties in the Texas High Plains improved in resilience, as well as some 
counties of Arkansas, Louisiana, eastern Oklahoma, and southern Texas 
(Fig. 6g). Urban counties of Texas High Plains and across the study area 
were generally able to maintain their high level of resilience, whereas 

many rural counties in the Texas High Plains remained susceptible. A 
total of 32 counties scattered across the study area experienced a decline 
in resilience level. 

Overall, throughout 2000–2015, resilience improved by one level in 
148 (29.4%) counties and by two levels in 113 (22.5%), with the latter 

Fig. 6. Resilience levels for (a) 2000, (b) 2005, (c) 2010, (d) 2015, change in resilience levels for (e) 2000–2005, (f) 2005–2010, (g) 2010–2015, (h) 2000–2015.  

V.V. Mihunov et al.                                                                                                                                                                                                                             



International Journal of Disaster Risk Reduction 41 (2019) 101302

9

counties concentrated in the eastern part of the study area (Fig. 6h). A 
total of eight counties (1.6%) decreased their resilience by one level, and 
40 (8%) by two levels; these were mostly in the Texas High Plains area. A 
total of 193 counties, or 38.4% of all counties in the study area, main
tained the same resilience level. 

This is an optimistic result, since the majority (52.1%) of the counties 
improved their resilience level, and only a small percentage (9.6%) 
decreased their resilience level. Some counties that endured high dam
age – Glasscock, Martin, and King in Texas, and Cimarron County, 
Oklahoma, were classified as susceptible in 2000 and remained sus
ceptible in 2015. Foard and Hall counties in Texas decreased their 
resilience level by one and two levels, respectively, and became sus
ceptible in 2015. Lynn County, Texas, a part of Lubbock Metropolitan 
Statistical Area, endured the third-highest damage overall in 
2000–2015, but improved resilience by two levels and became resistant 
in 2015. 

4.4. Evaluation of hypotheses 

To further understand the dynamics behind these changes, the two 
original hypotheses were evaluated: (1) more affluent counties will 
continue to improve their resilience, whereas counties with poorer so
cioeconomic conditions will decrease their resilience, leading to a 
widening gap in resilience levels among counties over time; (2) given the 
potential neighborhood effects, counties with high-resilience neighbors 
are likely to have high resilience, whereas counties near low-resilience 
neighbors are likely to have low resilience, and this effect will likely 
strengthen over time, thus increasing the regional disparity of resilience 
to drought. 

For Hypothesis 1, the resilience levels in 2000 (1 – susceptible, 2 – 
recovering, 3 – resistant, 4 – usurper) were cross-tabulated with the 
difference in resilience level between 2015 and 2000 (� 2, � 1, 0, þ1, 
þ2, þ3; Table 5). The results show that resilience did not improve in the 
vast majority (90.5%) of the susceptible counties. Counties with the 
recovering rating showed the most improvement, with 85.6% of them 
improving their resilience level by one or two levels. Only 11.7% of the 
counties in this category maintained the same resilience level in 2015, 
and only 2.7% of the counties in this category showed a decrease in their 
resilience by one level. Counties in the third (resistant) category also 
showed improvement, but the pattern is not straightforward. A total of 
41.8% of the counties remained resistant and 28.4% improved by one 
level (from resistant to usurper). However, about 29.9% of them 
decreased by two levels into susceptible, and no counties decreased by 
one level. Finally, 98.6% of the counties in the highest resilience group 
(usurper) did not decrease their resilience level. 

These results largely support the first hypothesis but with some 
modification. A majority of the counties with the lowest resilience did 
not improve and a majority of the counties with the highest resilience 
did not decrease their resilience level. However, a majority of counties in 
the second-lowest resilience group (recovering) showed improvement, 
whereas about the same percentage of counties (about 30%) in the 
second-highest resilience group (resistant) moved into either the lowest 
or highest resilience category in the next resilience cycle. 

To further analyze how the initial levels of the resilience predictors 
in 2000 contributed to consecutive resilience change from 2000 to 2015, 
we conducted an ANOVA test between the groups of counties that 

increased, decreased, and maintained their resilience level (Table 6). 
The test reveals that all variables except average household size had a 
significant difference in means between the three groups. Counties that 
improved in resilience had lower initial level of agricultural employ
ment, lower farmers’ average tax expenses, and higher agricultural asset 
price. In contrast, counties that decreased in resilience started with the 
highest % agricultural employment, lowest agricultural assets, and 
highest farmers’ tax expenses among the three groups. 

To test the second hypothesis – that the resilience of the counties will 
become more spatially clustered, leading to further regional disparities – 
the spatial autocorrelation of the counties’ resilience scores in Years 
2000 and 2015 were evaluated and compared using the Spatial Auto
correlation (Global Moran’s I) tool in ArcGIS Desktop [73]. The 
method’s spatial relationship was specified as inverse distance and the 
distance threshold was computed and applied automatically at 
116.73 km. The Global Moran’s I measures spatial autocorrelation of the 
features’ values based on their locations and tests whether their spatial 
pattern is clustered, dispersed, or random [73,74]. Significant p-value in 
the Moran’s I detects non-random patterns, with positive z-score sug
gesting that the values are clustered and negative z-score indicating 
spatial dispersion. In the Year 2000, the resilience of the counties was 
found to be clustered at 1% significance level with z-score of 15.22. In 
the Year 2015, the resilience scores in the study area were also clustered 
significantly at 1% confidence level but with a higher z-score of 16.12. 
The increase in Moran’s I z-score shows an increase in spatial divide 
(clustered pattern) in counties’ resilience, and thus confirms the second 
hypothesis. 

5. Discussion 

Like most large-scale studies with multiple time points, this study has 
faced a number of issues. First, data availability, quality, and inter- 

Table 5 
Resilience levels in 2000 (row) by resilience level change for the entire study period (2000–2015) (column).   

� 3 � 2 � 1 0 þ1 þ2 þ3 

1 – Susceptible (42) N/A N/A N/A 38 (90.5%) 0 3 (7.1%) 1 (2.4%) 
2 – Recovering (257) N/A N/A 7 (2.7%) 30 (11.7%) 110 (42.8%) 110 (42.8%) N/A 
3 – Resistant (134) N/A 40 (29.9%) 0 56 (41.8%) 38 (28.4%) N/A N/A 
4 – Usurper (70) 0 0 1 (1.4%) 69 (98.6%) N/A N/A N/A 
All counties (503) 0 40 (8%) 8 (1.6%) 193 (38.4%) 148 (29.4%) 113 (22.5%) 1 (0.2%)  

Table 6 
Mean values of resilience variables in 2000 in counties that increased, 
decreased, or did not change their resilience level from 2000 to 2015.  

Resilience variables 
in 2000 (preexisting 
conditions) 

Resilience 
decrease 

No change in 
resilience 

Resilience 
increase 

ANOVA 
F-value 

% employed in 
agriculture 

15.20 10.13 7.36 27.57a 

% farms in federal 
programs 

0.37 0.28 0.23 7.94a 

% over 65 years old 17.31 14.99 14.36 11.03a 

% of civilians with 
disabilities 

24.14 21.22 23.90 26.24a 

Number of farms per 
sq. mile 

0.65 0.99 0.99 4.75a 

Agricultural assets, 
$/acre 

725.66 1497.45 1404.09 5.91a 

Avg expense on 
taxes, $/farm 

2540.51 2136.79 1612.96 13.80a 

Median household 
income 

29,547.98 34,650.83 30,636.52 22.52a 

Avg household size 2.60 2.57 2.62 2.47 
% civilian labor 

force 
45.53 47.77 43.87 32.78a  

a Asterisk are p-values < 0.05 showing significant difference of means be
tween groups. 

V.V. Mihunov et al.                                                                                                                                                                                                                             



International Journal of Disaster Risk Reduction 41 (2019) 101302

10

comparability at each time point posts a serious challenge in conducting 
a temporal study. Median rent is the variable that was selected as sig
nificant in Mihunov et al. [6]; but it was removed in this study to comply 
with the U.S. Census Bureau guidelines for suitability of the Census 2000 
and ACS data for temporal comparison [75]. 

Second, the many missing values in 2005 post another challenge for 
estimating resilience levels for that year. The multiple-imputations 
method was used to impute missing values. Authors of the MICE pack
age suggested that the multiple imputations framework is suitable for 
statistical inference, because it does not disturb the data distribution as 
in the simple mean imputation, does not artificially increase correlations 
like regression imputations, and is not subjected to biases of listwise 
deletion. The method creates several (five by default in MICE) iterations 
of the imputed data by replacing the missing values with plausible 
values. The method allows analyses to be performed, such as building a 
linear regression model with each of the multiple imputed datasets and 
then combining separate estimates of standard error for each analysis 
into an overall estimate of standard error, confidence intervals, and p- 
values. This allows estimation of uncertainties and sensitivity analysis 
when building a model with imputed data [70]. In this study, the 
diagnostic plot from the imputation process shows that the imputed 
values follow the original data closely; hence, the missing values and the 
subsequent estimated resilience levels in 2005 should be plausible. 

Nevertheless, the significance of this study is two-fold. First, from a 
theoretical point of view, the study offers new insights into the patterns 
and processes of community resilience to the drought hazard in this 
region. The hotspot maps, the 10 variables selected, and the computed 
RIM scores provide baseline information on how and why resilience in 
these counties have changed. In addition to the statistically derived re
sults and hypothesis testing, the study provides useful descriptive in
formation from multiple real-world data variables to support the 
validity of the model results and conclusions. 

Second, the study provides a practical decision-making tool that is 
based on quantitative assessment and validation using empirical data 
(hazard, damage, and recovery). The RIM model presented in this study 
captures a community’s ability to withstand drought impacts, its sus
ceptibility to monetary damage, and its capacity for population growth 
under the drought stress. The ten resilience predictors are actionable and 
quantifiable features of the communities that discriminate them into the 
four resilience groups, each one of which is characterized by a distinct 
pattern of absorbed drought incidence (hazard intensity), endured 
damage, and population change (recovery). The resilience predictors 
identified and their quantitative contributions to the final community 
resilience level derived from this study should help inform policymakers 
in devising their local and regional adaptation strategies, such as iden
tifying which variables should be promoted. For example, stakeholders 
might interpret lower agricultural employment and higher number of 
farms per square mile in counties would increase resilience, hence 
promoting diversity in agriculture and growth of non-agricultural eco
nomic activities might be beneficial to their communities as a long-term 
adaptive strategy. 

Moreover, the inferential ability of the RIM model is particularly 
useful, since the discriminant functions derived in the RIM model can be 
applied to a different study area or time period provided that the sta
tistical assumptions are met. The same model can be applied to simu
lated data under hypothetical scenarios. 

6. Conclusion 

This study assessed the temporal dynamics of community resilience 
to drought hazards in the south-central U.S. from 2000 to 2015 using the 
Resilience Inference Measurement (RIM) model. The research aimed to 
answer three questions: (i) is a change in drought resilience in the region 
evident over time? (ii) where and why did some counties experience an 
increase while others suffered a decrease in resilience? (iii) is there a 
widening gap in disparity in drought resilience over time? For this 

question, two related hypotheses were tested: (1) more affluent counties 
will continue to improve their resilience, whereas counties with poorer 
socioeconomic conditions will decrease their resilience, leading to a 
widening gap in resilience levels among counties over time; (2) counties 
near high-resilience neighbors will likely increase their resilience, 
whereas counties near low-resilience neighbors will likely decrease their 
resilience, thus increasing the regional disparity of resilience to drought 
hazards. The study used shrinkage discriminant analysis and a total of 
52 socioeconomic, agriculture, energy, and water-related variables for 
the RIM analysis, which led to ten variables selected, with a classifica
tion accuracy of 67.9%. The ten variables selected in the final model are 
related to the economic performance in the agricultural sector, socio
economic well-being, and human health. 

In addressing the three research questions, the study results show 
that (i) there are spatial-temporal changes in community resilience 
among the 503 counties in the region. (ii) Overall, throughout 
2000–2015, 29.4% (148) counties improved their resilience by one 
level, and 22.5% (113 counties) improved by two levels. Counties that 
improved their resilience had lower initial level of agricultural 
employment, lower farmers’ average tax expenses, and higher agricul
tural asset price. In contrast, counties that decreased resilience started 
with the highest % agricultural employment, lowest agricultural assets, 
and highest farmers’ tax expenses among the three groups (resilience 
decrease, no change, resilience increase). (iii) Finally, through testing 
and confirming the two hypotheses, the study reveals increasing 
regional disparity in community resilience to drought hazards in the 
region. 

Drought impacts on society are complex, multifaceted, and difficult 
to quantify. Building on the previous study by Mihunov et al. [6]; this 
research is among the first to assess and analyze communities’ perfor
mance under pressures of drought impacts at an extensive spatial and 
temporal scale. Findings from this study provide several baseline sug
gestions on how and why communities perform differently under 
drought conditions. For instance, the make-up of the agricultural and 
socioeconomic variables in the usurper group found in this study sug
gests that sustainable farming is key to drought resilience in agricultural 
communities. Moreover, diversification of economy beyond farming is 
beneficial for counties strongly relying on agriculture. These efforts will 
not only influence a community itself but also its neighbors, based on the 
confirmed second hypothesis. These findings can be further refined in 
future studies to simulate community resilience projections using sce
narios generated from the Global Circulation Models (GCMs). The 
findings provide insights into future survey-based research and detailed 
case studies on drought resilience. 
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