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a b s t r a c t

Despite the many applications of fractals in geosciences, the problem of inconsistent

results derived from different fractal calculation algorithms remains. Previous research

found that the modified triangular prism method was the most accurate for calculating

the fractal dimension of complex surfaces such as remote sensing images. However,

when extending the application of the technique into local measurements, new

problems arise. Hence, adjustment to the existing technique is needed. This paper

introduces a new algorithm for calculating the fractal dimension within a local window

based on the triangular prism method. Instead of using arbitrary geometric steps, the

new algorithm computes the number of steps needed for fractal calculation according to

the window size. The new algorithm, called the divisor-step method, was tested using

4000 simulated surfaces and found to be more robust and accurate than the

conventional geometric-step method. The new divisor-step method is recommended

especially for local measurements.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As a promising spatial metric, the fractal dimension
(Mandelbrot, 1967) has been frequently applied in many
geoscience applications, including remote-sensing image-
complexity characterization (De Cola, 1989; Lam, 2004;
Liu and Cameron, 2001; Qiu et al., 1999; Quattrochi et al.,
2001; Turner and Ruscher, 1988), land use/land cover
classification, and change detection (Chust et al., 2004;
Emerson et al., 2005; Myint et al., 2004; Myint and
Lam, 2005; Read and Lam, 2002). Despite the many
applications, the problem of inconsistent results derived
from different fractal calculation algorithms remains.
Algorithms such as the isarithm, variogram, probability,
ll rights reserved.
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box-counting, and triangular prism methods have been
proposed and tested (Goodchild, 1980; Jaggi et al., 1993;
Lam and De Cola, 1993; Sun et al., 2006; Tate, 1998;
Voss, 1988). For complex surfaces such as remote sensing
images, it was found that the modified triangular prism
method was the most reliable estimator when compared
with the isarithm and variogram methods (Lam et al.,
2002; Zhou and Lam, 2005). This paper focuses on
improving the triangular prism method, especially on
extending its applications for local measurements.

Originally proposed by Clarke (1986), the triangular
prism method utilizes imaginary three-dimensional
prisms constructed from the image, and then compares
the total prism surface area with the step size used to
derive the prisms in a double-logarithmic regression. The
slope of the regression is then used to estimate the fractal
dimension. Specifically, a triangular prism is constructed
by connecting four adjacent pixels and its center (Fig. 1).
The height of each corner pixel is the pixel intensity value
and the height of the center takes the average of the four
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Fig. 1. A triangular prism and a regression plot.
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corner pixels. The step size is the number of pixels on a
side. Given a step size, triangular prisms are constructed
across the image and the total surface area of all triangular
prisms calculated. The procedure is repeated for each step
size. A double-log regression between the total prism
surface area (A) and the area of step size (S2) is estimated
to derive the slope B, where fractal dimension D ¼ 2�B.
Clarke’s original algorithm was later modified so that the
length of step size, not step-size squared, is used in the
regression, because the use of step-size squared led to
underestimation of the fractal dimension (Jaggi et al.,
1993). The modified triangular prism method was subse-
quently proven to be mathematically correct, as well as
experimentally reliable (Lam et al., 2002; Zhao, 2001). It
was then suggested that the modified triangular prism
method should be used. Hence,

Log A ¼ aþ ð2� DÞLog S (1)

where A is the total surface area of the prism ‘‘facets’’, S is
the step size, a is the intercept, and D is the fractal
dimension. In the remainder of the paper, whenever the
term ‘‘triangular prism method’’ is used, it implies the
modified version. It is noted that some other variants were
also developed by using alternative pixels other than
corner pixels of the square (Sun, 2006).

In general, the triangular prism method is very robust
in its estimation of the fractal dimension. The only source
of estimation variation is the choice of the number of
steps and the corresponding step sizes. How to determine
these two related parameters so that the results are
reliable is the focus of this study. In essence, this is an
issue of sampling strategy, which is common to many
fractal estimation algorithms and will affect the estima-
tion accuracy. This paper introduces a new sampling
strategy, called the divisor-step method, which is designed
to overcome the weakness of the geometric-step method
that has been commonly employed in the triangular prism
method.

2. Sampling issues

The original algorithm by Clarke (1986) uses a series of
geometric steps with an increase in power of two until it
reaches the maximum limit imposed by the algorithm. For
example, for a 33�33 image, steps 1, 2, 4, 8, and 16 can be
used. The maximum step size is usually bounded by a
value equivalent to the image size minus one and divided
by half ((W�1)/2), which is 16 in this case. Otherwise, it
will result in only one triangular prism for the largest step
(S ¼ 32 for the example), which could lead to unstable
log–log area-step regression. The use of geometric steps is
to ensure that points are distributed uniformly on the
log–log regression curve so that an unbiased regression
can be obtained. However, if the size of an image (or local
window within an image) is not of 2n+1 pixels (for
convenience, it is called ‘‘geometric-square’’ image there-
after), a portion of the image will not be included in the
calculation. This is considered undesirable from a theore-
tical point of view, as variation in some parts of the image
is not measured. When the algorithm applied locally to a
small non-geometric-square local window, the omitted
portion could be significantly large that could lead to
unreliable estimation of local fractal dimension. For
example, if the local window size is 29�29, using
geometric steps of 1, 2, 4, and 8, only 17�17 (i.e., 2n+1)
pixels will be used, whereas the remaining 2/3 pixels
within the window will not be included in the estimation.

Another sampling method is to employ arithmetic
steps, such as 1, 2, 3, 4, and so on. The arithmetic-step
method has an advantage that it can yield sufficient
number of area-step points for the log–log regression even
for a very small study area. However, since it is not a
geometric progression, a counter argument for this
method is that these arithmetic points might bias the
log–log regression estimate as a result of including more
samples at the lower end of the regression. The proposed
divisor-step method is designed such that full coverage of
the sampling area is ensured at each step.
3. Comparison using effective coverage ratio

3.1. The geometric-step method (fixed coverage)

The geometric-step method, as originally presented by
Clarke (1986), requires the calculation to be based on a
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Fig. 2. A top-view demonstration of coverage (shaded prisms) by different sampling methods with an 11�11 window. (a1–a3): geometric-step method

(fixed coverage); (b1–b3): geometric-step method (varying coverage); (c1–c3): arithmetic-step method; (d1–d3): divisor-step method.

W. Ju, N.S.-N. Lam / Computers & Geosciences 35 (2009) 1224–12331226
geometric-square subset of the study area. It has a fixed
coverage for all the geometric steps. Fig. 2a shows the
geometric steps of 1, 2, and 4 for an 11�11 local window.
For ease of visual comparison with other methods, the
upper-left subset is used instead of center cut. It is
apparent from Fig. 2a that some pixels are ‘‘wasted’’ and
will not be included in the calculation. As already
mentioned above, this will cause two problems. First,
the calculated fractal dimension is not a true measure-
ment of the entire window, and second, local windows
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with different sizes may have the same measurements as
they may be confined by the same sampling sizes for
calculation.

3.2. The geometric-step method (varying coverage)

To extend the ability of using geometric steps in the
calculation of non-geometric-square windows, some
algorithms will let the triangular prisms grow within the
study area and cover as many pixels as possible. The
coverage of triangular prisms at each step may vary, as
illustrated in Fig. 2b. This method was implemented in the
Image Characterization And Measurement System
(ICAMS) software (Lam et al., 1998; Quattrochi et al.,
1997). Although the coverage in this method is larger than
that of the original algorithm, it is clear that complete
coverage of the entire study area at all steps is not
guaranteed.

3.3. The arithmetic-step method

The arithmetic-step method has been used in previous
research to obtain sufficient number of regression points
when using a small window (e.g., Emerson et al., 2005).
The number of pixels utilized in the arithmetic-step
method is generally more than that of the geometric-step
methods. Fig. 2c presents the first three steps (1, 2, and 3)
using the arithmetic-step method for the same 11�11
window. Similar to the geometric-step methods, however,
100% coverage of the entire window at all steps is not
guaranteed.

3.4. The proposed divisor-step method

This new sampling method is quite intuitive. To cover
the entire W�W window (W is an odd number) by
triangular prisms at any given step, the step size should be
a divisor of (W�1). Using a set of divisor steps of (W�1)
will guarantee 100% coverage of the entire window at all
steps. For this example, the three divisible steps are 1, 2,
Table 1
Effective coverage ratios (ECR) and standard deviation of coverage (SDC) of dif

Window Geometric (fixed) Geometric (varying)

ECR SDC ECR

9�9 100 0.00 100

13�13 47.93 0.00 100

17�17 100 0.00 100

21�21 65.53 0.00 91.38

25�25 46.24 0.00 100

29�29 34.36 0.00 93.58

33�33 100 0.00 100

37�37 79.55 0.00 91.82

41�41 64.78 0.00 92.96

45�45 53.78 0.00 87.36

49�49 45.36 0.00 100

53�53 38.77 0.00 94.19

57�57 33.52 0.00 94.78

61�61 29.27 0.00 90.37

65�65 100 0.00 100

69�69 88.74 0.00 94.37
and 5 (Fig. 2d). By taking advantage of the 100% window
coverage at all steps, the derived fractal dimension value
is expected to measure more accurately the surface
variation within the study area. This is especially critical
to local fractal estimation, as excluding some pixels for
calculation in a small window area is more likely to lead to
unreliable results.

3.5. Effective coverage ratio and coverage fluctuation

To quantify the effects of different algorithms on pixel
utilization, the ratio between the average number of
utilized pixels at each step and the total number of pixels
contained in the local window can be used. In this study,
we define this ratio as effective coverage ratio (ECR)

ECR ¼
X
i2fsg

ffloor½ðW � 1Þ=i� � iþ 1g2=n

( ),
fW �Wg (2)

where {s} is the collection of step length, {floor[(W�1)/i]�
i+1}2 is the coverage (in pixels) at a given step i, n is
the size of the collection {s}, W is the size of the local
window. Higher ECR means less-wasted pixels. For the
geometric (fixed coverage) method, as the calculation is
based on a square subset, the ECR is calculated as the
following:

ECR ¼ f½floorðlog2 WÞ þ 1�=Wg2 (3)

Along with ECR, the standard deviation of coverage
(SDC) for all steps for each method can be calculated.
Table 1 lists the ECR and SDC of different methods at
different window sizes. The divisor-step method has 100%
coverage, whereas the geometric-step method (fixed
coverage) has the largest waste of pixels (i.e., lowest
ECR); hence, the method is not considered desirable and
will not be further tested in the following with simulated
surfaces. The arithmetic-step method and the geometric-
step (varying coverage) generally have larger ECRs than
the geometric-step method (fixed coverage). Neither the
geometric-step (varying coverage) nor the arithmetic-step
ferent sampling methods (%).

Arithmetic Divisor

SDC ECR SDC ECR SDC

0.00 90.12 1.23 100 0.00

0.00 95.27 0.48 100 0.00

0.00 89.19 0.49 100 0.00

0.17 86.21 0.47 100 0.00

0.00 88.41 0.34 100 0.00

0.13 85.13 0.30 100 0.00

0.00 83.79 0.28 100 0.00

0.11 87.63 0.23 100 0.00

0.16 84.87 0.22 100 0.00

0.20 82.15 0.20 100 0.00

0.00 84.76 0.18 100 0.00

0.08 82.87 0.16 100 0.00

0.12 83.84 0.16 100 0.00

0.15 84.92 0.14 100 0.00

0.00 82.72 0.14 100 0.00

0.06 81.49 0.13 100 0.00
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method can guarantee a full coverage for all steps. The
ECR and coverage fluctuation (SDC) are expected to affect
the accuracy and robustness of subsequent fractal surface
dimension estimation.
4. Comparison using simulated images

4.1. Shear displacement simulation

Since simulated self-similar fractal surfaces have
frequently been used for benchmark testing, we will also
utilize these simulated surfaces to test the performance of
the different sampling methods (Lam et al., 2002; Zhou
and Lam, 2005). The shear displacement method is one of
the popular algorithms used to generate fractional
Brownian motion (fBm) surfaces (Mandelbrot, 1975,
1983; Goodchild, 1980; Lam and De Cola, 1993). The
Fig. 3. Fractional Brownian surfaces (45�45) generated
algorithm works as follows: an image is initialized with
zero values everywhere. The image is then randomly cut
into halves and each part is randomly shifted vertically.
This shear-and-displacement process is repeated a num-
ber of times until there are several cliffs between adjacent
pixels. A Poisson process controls the intersection points
of the break lines, while the angles of intersections are
uniformly distributed. A persistence factor H controls the
magnitude of vertical shift and H satisfies

EðZi � ZiþdÞ
2
¼ jdj2H (4)

where Zi is the pixel value and d is the pixel distance. The
expected variance between two pixels is a function of
their distance powered by 2H. Fractal dimension is 3-H.

The shear displacement algorithm has been imple-
mented in ICAMS (Lam et al., 1998; Quattrochi et al., 1997)
with a batch mode available. Fig. 3 shows a set of 45�45
using shear displacement algorithm (3000 cuts).
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fractal surfaces with varying levels of complexity gener-
ated using ICAMS.
4.2. Comparison among different sampling methods

To compare the accuracy and robustness of different
sampling methods, a set of small simulated surfaces with
16 sizes ranging from 9�9 to 69�69 were generated.
These window sizes were selected, because this series
cover most windows used in the previous image classi-
fication or segmentation research that uses local fractal
measurements (De Jong and Burrough, 1995; Emerson et
al., 2005; Myint and Lam, 2005). For each window size, 50
surfaces were generated for each of the five theoretical
dimensions (2.1, 2.3, 2.5, 2.7, and 2.9) using the same
number of cuts (3000). The 50 surfaces were generated
with the same control parameters (theoretical dimension,
image size, and number of cuts), but each time a different
sequence of random numbers was used, hence the
surfaces are different. The surfaces were generated by
ICAMS based on the algorithm described in Lam and De
Cola (1993). This resulted in a total of 4000 surfaces used
for this experiment. All simulated surfaces were stretched
to 0–255 to provide the same basis for comparison. For
the geometric-step (varying coverage) method, the max-
imum number of steps and step sizes were calculated
according to (W�1)/2, and in this experiment, the number
of steps ranged from 4 to 6 (except when W ¼ 9),
depending on the window size. For the arithmetic-step
method, the number of steps was (W�1)/2. The number of
steps of the divisor-step method depended on the
available divisors of (W�1), and it ranged from 4 to 11
(except when W ¼ 9) in this experiment. ICAMS was used
to generate the simulated surfaces. ICAMS already has two
built-in modules for the geometric-step (varying cover-
age) and arithmetic-step methods. The divisor-step meth-
od was programmed in Matlab and was not yet available
in ICAMS. Sample code can be requested from the authors.

For each window size, the average estimated fractal
dimension was calculated and the root-mean-square
errors between the estimated and the theoretical D were
computed. The grand average values by fractal dimension
for all window sizes are presented in Table 2. Based on the
average estimated D measure, the arithmetic-step method
yielded an estimated fractal dimension much closer to the
Table 2
Estimated fractal dimension and RMSE averaged for all 16 window sizes (from

D Geometric (varying) Arithme

Average D Average RMSE Average

2.1 2.12 0.109 2.15

2.3 2.18 0.153 2.24

2.5 2.45 0.129 2.53

2.7 2.79 0.143 2.87

2.9 2.97 0.127 3.06

Grand average 0.132
theoretical D for surfaces with low complexity (when
Do2.5), whereas the divisor-step method yielded more
accurate estimates for surfaces with high complexity
(when D42.5). This pattern can also be reflected by the
average RMSE measure, where the divisor method
resulted in lower RMSE for surfaces with high complexity,
and the arithmetic-step method yielded lower RMSE for
surfaces with low complexity. The geometric-step method
(varying coverage) ranks in the middle, with a grand
average RMSE equals to 0.132, compared with 0.123 and
0.136 of the divisor-step and arithmetic-step methods,
respectively.

A closer look of the results across window sizes
provides further insights. Fig. 4 plots the mean estimated
fractal dimension from different algorithms at different
windows. It can be observed that the geometric-step
method (varying coverage) had the most unstable estima-
tion across different window sizes and yielded the largest
deviations from the theoretical values at most window
sizes. The three peak points of the geometric-step method
(varying coverage) corresponded to the three worst ECR
and SDC in Table 1 (at windows 21�21, 45�45, and
61�61). This implies that the geometric-step (varying
coverage) method tends to overestimate the fractal
surface dimension (D ¼ 2.7, 2.9) when there is uneven or
partial coverage among the steps. When the coverage is
about the same as in other methods (arithmetic and
divisor), the geometric-step (varying coverage) method
yields similar fractal dimension values, as expected.

The arithmetic-step method consistently yields higher
estimated fractal dimension than the divisor-step method
across all window sizes. The plot (Fig. 4) further confirms
that the arithmetic-step method is a more accurate
estimator for low-complexity surfaces across all window
sizes, whereas the divisor-method is more accurate for
high-complexity surfaces. The estimates from the geo-
metric-step (varying coverage) method fluctuate a lot
across the windows, making this method far less desirable
for fractal surface estimation.

The RMSE plots across windows (Fig. 5) also show
similar patterns. For surfaces with high complexity
(D ¼ 2.7, 2.9), the arithmetic-step method is clearly the
worst due to high RMSEs and overestimation. The
geometric-step (varying coverage) method also yielded
high RMSEs, especially for windows with low ECRs and
high SDCs (e.g., at 21, 45, and 61). The divisor-step method
17�17 to 69�69).

tic Divisor

D Average RMSE Average D Average RMSE

0.101 2.04 0.095

0.109 2.11 0.201

0.111 2.39 0.141

0.195 2.74 0.101

0.166 2.91 0.077

0.136 0.123
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D ¼ 2.1; (b) D ¼ 2.3; (c) D ¼ 2.5; (d) D ¼ 2.7; and (e) D ¼ 2.9.
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is generally the best for most windows. For surfaces with
medium–low complexity (D ¼ 2.3, 2.5), the arithmetic-
step method generally achieves the best RMSE for most
windows. For surfaces with D ¼ 2.1, the arithmetic-step
method is close to the divisor-step method.
Based on this experiment, we can conclude that the
geometric-step method (varying coverage) is most un-
stable across different local windows and is less
accurate than the others for most theoretical dimensions,
thus the method should be avoided in the future.
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The arithmetic-step method consistently yields a higher
estimate than the other methods and is generally a better
estimator for surfaces with medium–low complexity
(D ¼ 2.3, 2.5), but it seriously overestimates the fractal
dimension of surfaces with high complexity (D ¼ 2.7, 2.9).
For D ¼ 2.9, the estimation consistently exceeds the
theoretical maximum of 3.0. The divisor-step method is
generally the best for surfaces with high complexity
(D ¼ 2.7, 2.9) and very low complexity (D ¼ 2.1), but it
underestimates for surfaces of medium and low complex-
ity (for D ¼ 2.3 and 2.5 with few exceptions).
5. Comparison with real-world data

To illustrate the effects of different algorithms in the
real-world situation, a test was made using an IKONOS
image (Fig. 6a). The subset (252�252 pixels) is the near-
infrared band of a typical urban residential neighborhood
extracted from an IKONOS image of New Orleans,
Fig. 6. (a) An urban residential neighborhood (252�252 pixels) displayed usin

and fractal layers derived from using 21�21 moving-windows with different s

step; and (d) divisor-step. For (b) to (d), brighter pixels denote higher local fra
Louisiana. The bit depth of the IKONOS image is
11-bit, and the spatial resolution of the near-infrared
band is 4 m. The residential neighborhood exhibits a
fractal appearance.

To visualize the difference among different sampling
methods in generating fractal layers, a 21�21 pixels
moving-window was applied to the subset to compute
local fractal dimensions using different sampling
methods. The 21�21 window size was picked because it
was one of the three peak points at which the perfor-
mance of the geometric-step method (varying coverage)
was the worst (Fig. 4). The use of this window size is
expected to better illustrate the problem of the geometric-
step method (varying coverage) visually. The results were
scaled to 0–255 for display (Fig. 6). The overwhelming
brighter appearance of the geometric-step (varying
coverage) and the arithmetic-step methods over the
divisor-step method indicate higher estimated values, a
finding similar to that of the simulated surface experi-
ment. The standard deviations of the estimated local
g near-infrared band of an IKONOS image from New Orleans, Louisiana,

ampling methods; (b) geometric-step (varying coverage); (c) arithmetic-

ctal dimensions. (IKONOS satellite imagery courtesy of Geoeye.)
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Table 3
Average local fractal dimension of a residential neighborhood in New

Orleans, LA.

Window Geometric (varying coverage) Arithmetic Divisor

9�9 2.52 2.67 2.52

13�13 2.51 2.68 2.59

17�17 2.65 2.79 2.65

21�21 2.84 2.85 2.68

25�25 2.64 2.87 2.72

29�29 2.77 2.90 2.72

33�33 2.74 2.93 2.74

37�37 2.84 2.93 2.77

41�41 2.87 2.95 2.76

45�45 2.95 2.96 2.78

49�49 2.73 2.97 2.80

53�53 2.80 2.98 2.80

57�57 2.82 3.00 2.79

61�61 2.88 3.00 2.83

65�65 2.81 3.00 2.81

69�69 2.85 3.01 2.82
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Fig. 7. Average fractal dimension of an urban residential neighborhood

measured from near-infrared band of an IKONOS image in New Orleans,

Louisiana.
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fractal dimensions were computed. For stretched images
(Fig. 6), the geometric-step method had the highest value
(9.03), compared with 8.34 and 8.71 for the arithmetic-
step and the divisor-step methods, respectively. Since the
original image is quite self-similar (Fig. 6a), it is expected,
local textures as reflected from the local fractal dimen-
sions should be similar or stable across the image, hence
the geometric-step method (varying coverage) can be
interpreted as less reliable at this window size. It is noted
that other factors such as variation of land cover, in
addition to window size, may also contribute to higher
standard deviation.

To further compare the estimated local fractal dimen-
sions, 16 local windows ranging from 9�9 to 69�69 (in
pixels) were used to derive fractal layers from the
residential subset. As different windows leave different
edge portions uncalculated, the central 150�150 pixels
were extracted from the resultant layers to provide the
same basis for comparison. The average local fractal
dimensions of each window size are listed in Table 3
and plotted in Fig. 7.

Since this is a real-world data set that does not have a
known D value to serve as a benchmark, comparison of
different methods cannot be based on the accuracy of
estimated fractal dimensions. However, Table 3 and Fig. 7
clearly show that the geometric-step (varying coverage)
method resulted in higher fluctuations in the average local
fractal dimensions across windows. This result is similar
to the results found in the simulated surface experiment
and can be attributed to the problem of different coverage
sizes at different sampling steps. The fluctuation across
windows, which may be attributed largely to the sampling
method, complicates the interpretation of window size
effects. It added an algorithm effect in addition to the
window size effect (Sun et al., 2006). Both the arithmetic-
step and divisor-step methods yielded fractal dimension
estimates that increased gradually with increasing win-
dow size while approaching a stable stage at larger
windows. Similar to the simulated surface experiment,
the arithmetic-step method seems to overestimate the
fractal dimension for larger windows, with values exceed-
ing 3.0, when window size is 57�57 and greater. Hence,
from this comparison, it can be suggested that the divisor
method is more preferable for real-world urban remote
sensing application.

The above discussion has been focused on square
images. In many geoscience applications, rectangular
images are often used instead. Some other fractal dimen-
sion estimators can compute fractal dimensions of
rectangular images easily, such as the isarithm and
variogram estimators (Goodchild, 1980; Jaggi et al.,
1993; Lam and De Cola, 1993). For the triangular prism
method, the effects of sampling strategy on the resultant
fractal estimates are expected to be greater for a
rectangular image than for a square image. Eq. (2)
can also be applied to evaluate the effective
coverage ratio of rectangular image. Consider a 151�201
image, by applying Eq. (2), the ECRs for different
methods can be computed as: 54.8% for the geometric-
step method (fixed coverage), 82.0% for the geometric-
step method (varying coverage), 93.0% for the
arithmetic-step method, and 100% for the divisor-step
method (using common divisors of both sides). For
irregular shapes, the triangular prism method would not
be an effective method for computing the fractal dimen-
sion. Alternative methods such as the isarithm method
should be considered.
6. Conclusions

Fractal dimension as an index has been widely used in
geosciences, even though inconsistent results from differ-
ent fractal estimators remain. Such inconsistencies could
be a result of different sampling strategies applied to a
fractal estimator. For local measurements where small
windows are used, the impacts of different sampling
strategies on the resultant fractal dimensions could be
high. This paper introduces a new sampling strategy,
called the divisor-step method, which can be applied to
the triangular prism method to compute the fractal
dimension. The divisor-step method is designed to fully
utilize the entire study area (window) for all steps for
calculation, so that part of the study area will not be
wasted in the calculation.
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Using 4000 simulated surfaces and an IKONOS subset,
the divisor-step method was compared with the two
conventional approaches, the arithmetic-step and the
geometric-step (varying coverage) methods. It was found
that the geometric-step method (varying coverage) was
less stable and less accurate than the other two methods
for most theoretical dimensions and windows; hence, it is
not recommended for use by the triangular prism method.
The arithmetic-step method consistently yielded a higher
dimension than the other two methods. It performed
better when the surfaces were of lower complexity, but for
surfaces of high complexity (D ¼ 2.7, 2.9), the arithmetic-
step method overestimated the fractal dimensions and
sometimes yielded a value exceeding 3.0. On the other
hand, the divisor-step method underestimated the fractal
dimension values for surfaces of low complexity, but
performed very well for surfaces of high complexity such
as satellite images. The overall RMSE for the divisor-step
method was also the lowest. Based on these results, it is
recommended that the divisor-step method should be
employed in fractal surface calculation algorithms, espe-
cially for complex urban remote sensing image character-
ization. The divisor-step method can be easily
programmed and implemented in any fractal estimation
algorithms.
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