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Abstract Drought is among the most insidious types of natural disasters and can have

devastating economic and human health impacts. This research analyzes the relationship

between two readily accessible drought indices—the Palmer Drought Severity Index

(PDSI) and Palmer Hydrologic Drought Index (PHDI)—and the damage incurred by such

droughts in terms of monetary loss, over the 1975–2010 time period on monthly basis, for

five states in the south-central USA. Because drought damage in the Spatial Hazards

Events and Losses Database for the United States (SHELDUSTM) is reported at the county

level, statistical downscaling techniques were used to estimate the county-level PDSI and

PHDI. Correlation analysis using the downscaled indices suggests that although relatively

few county–months contain drought damage reports, drought indices can be useful pre-

dictors of drought damage at the monthly temporal scale extended to 12 months and at the

county-level spatial scale. The varying time lags between occurrence of drought and

reporting of damage, perhaps due to varying resilience to drought intensity and duration by

crop types across space, along with differing irrigation schedules and adaptation measures

of the community to drought over space and time, may contribute to weakened correla-

tions. These results present a reminder of the complexities of anticipating the effects of

drought, but they contribute to the effort to improve our ability to mitigate the effects of

incipient drought.
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1 Introduction and background

Drought is among the most insidious types of natural disasters and can have devastating

economic and human health impacts. The 21 most damaging drought events that occurred

between 1980 and 2013 represent 12.4 % of the billion-dollar [consumer price index (CPI)

adjusted] natural disasters in the USA and $199 billion, or 19.1 %, of the total losses

among those events (Smith and Matthews 2015). Furthermore, the continual increase in

drought impacts in the recent historical record (Ma et al. 2013) and projection for con-

tinued escalating impacts in the future (Wang 2005; Dai 2013) amid wide uncertainties

(Burke and Brown 2008) calls for increased scientific understanding of the physical fea-

tures related to drought occurrence and associated environmental, economic, and behav-

ioral impacts.

Depending on the context, a drought may be defined based on meteorological, agri-

cultural, hydrological, or socioeconomic impacts (Wilhite and Glantz 1985; National

Drought Mitigation Center 2013), or some combination thereof. For management purposes,

resource planners have found that relying on an index-based operational definition of

drought would be most convenient in decision making.

Several drought indices are available; each captures somewhat different aspects of

drought conditions (Heim 2000). The Palmer Drought Severity Index (PDSI; Palmer 1965)

and Palmer Hydrological Drought Index (PHDI; Karl 1986) are commonly used, highly

regarded, and readily available metrics. The PDSI, a weekly index of long-term moisture

conditions, is produced by National Oceanic and Atmospheric Administration’s (NOAA’s)

Climate Prediction Center and is calibrated to ‘‘normal’’ conditions for its own subset of a

state known as a climate division, with 0.0 representing average soil moisture conditions at

that climate division for that time of year. Positive values represent above-normal moisture

conditions for that location and negative values suggest below-normal soil moisture.

Because the water balance calculations for PDSI include lags to take into account deep soil

moisture conditions, PDSI is often considered in many applications a reasonable and

versatile index of medium-term moisture.

For evaluating longer-term hydrological conditions, the PHDI may prove more useful,

because its even longer-lagged response to changes in moisture conditions may better

reflect the changes in groundwater availability and reservoir supplies that would be

characteristic of drought impacts on communities’ long-term water supply and demand

(Guttman 1991). These two indices remain the most widely used and cited measures of

drought. While other drought indices are available and useful, such as the Keetch–Byram

Drought Index (KBDI) used by the US Forest Service to indicate the potential hazard of

forest fire, and Thornthwaite’s (1948) water balance model (Mather 1979), which can be

derived from a Web-based program available from the US Geological Survey (2015;

originally described by McCabe and Markstrom 2007), the versatility and availability of

the PDSI and PHDI on a near-real-time basis make these two indices most desirable for use

by environmental planners.

Unfortunately, little work has considered the linkages between drought monitoring

indices and the actual damage to crops and properties, despite the substantial savings that

can be generated by effective implementation of drought restrictions (Haque et al. 2014).

Among the studies that have examined the viability of drought indices as indicators of

drought severity and/or impacts, Szinell et al. (1998) commented on the nature of the PDSI

time series in Hungary for characterizing historical drought occurrence. Quiring and

Papakryiakou (2003) found that Palmer’s Z-index outperformed other drought indices,
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including the PDSI, in assessing impacts to agricultural yield from drought in the Canadian

Prairies. Woli et al. (2013) found that artificial neural networks and climate indices could

improve drought forecasting in the coastal southeastern USA. Shahabfar and Eitzinger

(2013) found that the China-Z index (CZI) and modified CZI outperformed percent of

normal precipitation, standardized precipitation index (SPI; Guttman 1998), z-scores, and

de Martonne’s aridity index (Botzan et al. 1998) as drought predictors in Iran. Wang et al.

(2014) noted that the SPI correlates well with the remotely sensed Normalized Difference

Vegetation Index (NDVI) as an indicator of drought damage. But to date, little research has

considered comprehensively the linkages between drought indices, declared drought

events, and the actual economic damage to crops and properties from those events. The

ubiquity of the PDSI and PHDI makes these the most logical indices for public use, but the

literature appears to be mixed on whether these indices are valuable indicators of drought

impacts.

2 Objective

The objective of this research is to test the relationships between the PDSI and PHDI and

drought damage across a five-state region in the south-central USA (Arkansas, Louisiana,

New Mexico, Oklahoma, and Texas; Fig. 1), an area that is vulnerable to wide ranges of

hydroclimatic conditions from humid to arid. Moreover, the most densely and increasingly

populated part of this region—central Texas—lies at the ecotone between the humid

subtropical and semiarid climate types (Reynolds et al. 2015); numerous citizens may be

unfamiliar with the hazard and adaptation measures that go along with living under the

Fig. 1 The study area
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wide range of hydroclimatic conditions that can be experienced. Therefore, an improved

assessment of the relationship between drought indices and subsequent drought declaration

and damage could provide environmental planners with improved information for com-

municating drought onset and danger to the citizenry.

We hypothesize that existing modeled parameters such as the PDSI and PHDI accu-

rately represent the damage due to droughts in the study region and that spatial differences

exist in the relationship between drought exposure and drought damage among different

sections of the south-central USA. States that have high drought exposure, such as

Oklahoma, may sustain smaller damage (i.e., lower vulnerability), due to relatively higher

amenability to mitigation and adaptation strategies in the residential, agricultural, and

industrial sectors. In addition, we hypothesize that drought duration is more strongly

correlated than drought intensity to drought damage in the south-central USA. For inci-

dents of drought exposure (identified by months with PDSI B -1.0, or in a separate

analysis, PHDI B -1.0), is drought damage (in 2011 CPI-adjusted dollars) correlated with

the number of consecutive months in the drought (i.e., duration)?

3 Data and methods

The PDSI and PHDI are published weekly and aggregated into a monthly dataset by

NOAA, at the climate divisional level. These monthly data are extracted for the 45 climate

divisions in the five-state region over the 1975–2010 period, the time corresponding to the

rapid population growth over the central part of the study area. Modifications to the PDSI

have been introduced based on improved algorithms for estimating potential evapotran-

spiration (Thornthwaite 1948) and based on probabilistic modeling of moisture departures

(Ma et al. 2014), allowing the PDSI to remain the most widely used index for drought

monitoring in the USA (Dai 2011). Limitations of the PDSI (Alley 1984; Heim 2002) and

the ambiguities involved in using the indices to determine when a drought is declared

(Hayes 2015) have been noted.

The University of South Carolina’s SHELDUSTM database version 13.1 (Hazards &

Vulnerability Research Institute 2014) is used for quantifying drought damage by county.

SHELDUSTM data are derived from reports from Storm Data and Unusual Weather

Phenomena published by National Centers for Environmental Information (NCEI; for-

merly National Climatic Data Center) and information from the National Geophysical Data

Center and the Storm Prediction Center. In SHELDUSTM, each drought event causing

more than $50,000 in losses (1960–1970), more than $50,000 in losses or any fatalities

(1971–1995), and any monetary losses or fatalities (1996–2010) were entered manually

into the database. For each drought event, SHELDUSTM records the beginning and ending

date, location (county and state), property and crop losses (adjusted to 2011 dollars),

injuries, and fatalities in each county. Consultation with NOAA’s NCEI confirmed a

suspected error for the July 2010 damage in Tensas Parish, Louisiana—the $700 million in

damage should have been reported as $700,000 (personal communication, Stuart Hinson,

NOAA, 7/17/15); we implemented this change in our dataset.

Use of the damage data is not without its cautions. Despite the fact that SHELDUSTM

includes damage due to the drought hazard along with that from landslides, winter weather,

heat, severe weather, wind, floods, tornadoes, hurricanes, fires, earthquake, volcano, tsu-

nami, and technological and biological hazards, biases exist in the extent of coverage

across the different hazard types and across space, due to differences in the extent to which

different hazards are monitored and investigated (Gall et al. 2009). Droughts remain
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notoriously underreported in all databases, including SHELDUSTM (Svoboda et al. 2002;

Gall et al. 2009. Gall et al. (2009) caution that a lag of coverage from *180 to 600 days is

possible in SHELDUSTM. Moreover, Mechler and Bouwer (2015) note the importance of

vulnerability as a modulator of the relationship between the extreme event and/or climatic

change and losses, and vulnerability can be difficult to measure. These complications may

perhaps explain why little scholarly work to date has assessed economic damage from

drought. But yet the high and rapidly escalating losses due to drought call for immediate

analysis, even with results that invite caution in interpretation.

It was necessary to transform the event-based SHELDUSTM database into monthly

county-level economic losses during 1975–2010. Both crop losses and total losses (crop

and property) were chosen to represent the damage caused by drought events. Crop losses

not only reflect direct responses to hydrological conditions but also contribute to the most

of total losses according to historic records. Each event-based crop/total loss was evenly

divided into monthly crop/total loss based on the sustaining duration in each month, which

was calculated from the beginning and ending date. For example, if a drought event had

occurred in Orleans Parish from May 27, 2010, to July 15, 2010, and caused $1000 in total

loss, the duration of this event would have been reported as 5, 30, and 15 days for May,

June, and July 2010, respectively, and the total losses from this event would have been 100,

600, and 300 dollars, for May, June, and July 2010, respectively. Finally, the county-level

drought index layers and damage layers were connected and output as records of county,

year, month, PDSI, PHDI, duration, CPI-adjusted crop damage, and CPI-adjusted total

damage. The preprocessing utilized a python script embedded in ArcGIS to handle the

217,296 (503 9 36 9 12) records.

The areal interpolation method (ESRI 2012) in the ‘‘Geostatistical Analyst’’ extension

in ArcGIS 10.1 (Environmental System Research Institute (ESRI) 2012) was used for

statistical downscaling of the climate division-based PDSI and PHDI to the county level

for each of the 432 months of analysis. Areal interpolation reaggregates data from one set

of polygons (the source polygons) to another (the target polygons), and different approa-

ches can be used to perform this task (Goodchild and Lam 1980; Lam 1983). The ArcGIS

extension uses Kriging theory to conduct areal interpolation (Oliver and Webster 1990;

Krivoruchko et al. 2011; Stein 2012). Downscaling drought indices from climate divisions

to counties is a two-step process. In the first step, a smooth prediction surface was created

from the attribute data (drought index values) input for each climate division. In the second

step, this prediction surface of drought indices was re-aggregated to the county-level

feature class. To create an accurate prediction surface with ‘‘Geostatistical Wizard,’’ the

covariance curve needs to be fitted. Therefore, lag size value, type parameters (K-Bessel

and stable), and lattice spacing values were selected carefully to fit the model optimally.

The mathematical description of the interpolation procedure is described by Krivoruchko

et al. (2011). Predictions and standard errors were calculated for all the target polygons. To

generate results with at least 90 % of the empirical covariances falling within the 90 %

confidence intervals, a covariance model was specified by fitting a proper covariance curve

within the Kriging framework.

For a given county, drought duration was defined as the number of consecutive months

in which the downscaled county-level PDSI (and, in a separate analysis, PHDI) was below

–1.0. Then, because of the predominance of months with no drought-related damage

reported in SHELDUSTM, all months with zero damage were removed from analysis prior

to running the correlations. Because of concern about the uncertain and varying lag

relationship for reporting drought damage after onset of drought, the county-level damage

data were aggregated over a 12-month moving window (including months with no damage)
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beginning on each month of the time series. This lag was chosen in order to keep one

complete growing season within each window to validate comparisons and correlations of

intensity/duration to losses, while still taking into account the fact that lags associated with

SHELDUSTM could be from 6 to 20 months (Gall et al. 2009). The purpose is to ascertain

the extent to which an incipient drought can be used to predict aggregated drought damage

over the next 12 months.

4 Results and discussion

4.1 Drought occurrence, persistence, and damage

A total of 70,072 (67,974) of the 217,296 county–months (32.2 (31.3) %) had a PDSI

(PHDI) below -1.0. The longest run of consecutive PDSI values below -1.0 in that

particular county was for a whopping 70 months—from March 1998 to December 2003, in

Jefferson Davis County, Texas (Trans Pecos climate division). The longest run of a PHDI

below -1.0 in its county was for 49 months—from October 2000 to January 2005, in San

Juan County, New Mexico (Northwestern Plateau climate division).

A total of $15.3 billion in 2011 CPI-adjusted drought damage occurred across the study

area during the 1975–2010 period. The impact was widespread, with damage reported at

some point in the period in 249 of the 254 counties in Texas, all 77 counties in Oklahoma,

71 of the 75 counties in Arkansas, all 64 parishes in Louisiana, and 2 of the 33 counties in

New Mexico. In all, Texas sustained $9.92 billion in damage over the period, with

Oklahoma experiencing $2.03 billion, Louisiana having $1.55 billion, Arkansas experi-

encing $1.81 billion, and New Mexico sustaining $0.02 billion. The most-damaged county

was in Louisiana, with Caddo Parish sustaining $134 million in drought damage, mostly

from the exceptional drought of 2010 (which continued beyond the study period into

2011). All other counties on the ‘‘top ten’’ list for drought damage are in Texas, with

Childress County, in the rural southeastern Texas panhandle, sustaining almost $118

million, followed by Briscoe and Hall ($115 million each), Swisher ($114 million), Castro

and Palmer ($112 million each), Kent and Stonewall ($110 million each), and King ($108

million) rounding out the list. Figure 2 provides an example of the relationship between

Fig. 2 Damage due to drought in Childress County
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drought damage, PDSI, and PHDI for Childress County. Like many counties, drought

occurs episodically in Childress County, and not necessarily in the months that have

extremely low drought indices or during long runs of months with low drought indices.

General features of the total crop and overall damage due to drought by state are shown

across the annual time series (Fig. 3a, b) and by month of the year (Fig. 4a, b). Results

generally suggest that crop damage occupies the vast majority of drought damage.

Moreover, drought damage is episodic in each state, not surprisingly with far more damage

in Texas than any other state. Drought damage is reported throughout the year in Texas, but

more damage tends to be reported in summer months than in other months in all states,

with a spurious spike in reporting in Texas in December (Fig. 4).

4.2 Relationship between drought damage and drought indices

Relatively strong negative correlations exist between monthly drought index (for both the

PDSI and PHDI) and non-lagged monthly drought damage, when analyzed across all 503

counties in the study area (Table 1). Statistically significant negative correlations occur in

all seasons except autumn for both the PDSI and PHDI analysis. All months from January

through April and June through July also showed statistically significant negative corre-

lations to damage for both indices, with May and September displaying significantly

negative correlations for the PDSI only. The correlations were comparable for both the

PDSI and PHDI at the monthly scale of analysis. However, the presence of small

Fig. 3 a Crop damage by year. b Total damage by year
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frequencies of months with drought damage in general (ranging from 328, or

0.018/county–year, in February to 734, or 0.040/county–year, in July; Table 1) seems to

support the notion that drought damage is likely to be underreported and invites caution in

the interpretation of results.

New Mexico had only 3 county–months of drought damage, and therefore, no further

conclusions are drawn for that state. Significantly negative correlations between drought

indices and damage were observed for Arkansas and Texas counties, slightly weaker but

still significantly negative correlations were found for Louisiana parishes, and Oklahoma

counties actually displayed signs of a spurious positive association between drought

indices and drought damage, especially for the PHDI (Table 2). The positive correlation in

Oklahoma could reflect a dependence on irrigation for averting losses in hydrologic

drought conditions. In Oklahoma, Texas, and Louisiana, the PHDI offered stronger year-

round correlations than the PDSI.

For all states except Texas, there were too few county–months to analyze correlations

by state for each of the 12 months of the year. Texas is of special interest not only because

its size permits robust analysis, but also because its central location in the study area

minimizes potential downscaling issues introduced along the boundary of the study area.

Analysis of the 9144 county–months in Texas (254 9 36) for each January, each February,

etc. of the dataset supports the notion of significant correlations between drought index and

drought damage. In fact, the pattern closely mirrors that of the region as a whole, with

significantly negative correlations observed throughout the year except in fall, when signs

Fig. 4 a Crop damage by month. b Total damage by month
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of a positive correlation are present. Generally, stronger significant correlations are found

between drought damage and the PDSI rather than the PHDI in the cooler months, with

PHDI correlating more strongly in the hottest months (Table 3).

The relationship between drought duration and drought damage is quantified in

Tables 4, 5, and 6. Results generally suggest that drought duration, defined as the number

of consecutive months in which the drought index (PDSI and PHDI, respectively) falls

below -1.0 for that county–month, is also linked (positively) to monthly drought damage

(Table 4), especially for the PDSI. The presence of the weakest correlations in summer

may be attributable to the fact that by the summer of a persistently dry early growing

season, crop damage had already been caused and recorded, leaving little further damage to

occur.

The relationship between drought duration and drought damage by state is shown in

Table 5. The significant positive correlations in Texas and Arkansas (the latter for PDSI

duration only) are not surprising, but again, the notion that long drought durations are

associated with less damage in Oklahoma is counterintuitive. These results again may

Table 1 Pearson correlations between drought index (PDSI and PHDI) and drought damage (2011 CPI-
adjusted dollars), for county–months with nonzero drought damage totals, 1975–2010

Month or season Number of nonzero
damage county–months
(1975–2010)

r (PDSI vs.
damage)

p value r (PHDI vs.
damage)

p value

Winter (D–J–F) 1212 –.200 \.001 –.267 \.001

Spring (M–A–M) 1292 –.362 \.001 –.163 \.001

Summer (J–J–A) 2097 –.091 \.001 –.108 \.001

Autumn (S–O–N) 1213 .234 \.001 .056 .051

January 379 –.600 \.001 –.438 \.001

February 328 –.260 \.001 –.197 \.001

March 356 –.288 \.001 –.278 \.001

April 425 –.359 \.001 –.343 \.001

May 511 –.364 \.001 –.073 .097

June 648 –.404 \.001 –.374 \.001

July 734 –.129 \.001 –.146 \.001

August 715 .047 .209 .037 .321

September 444 –.217 \.001 –.050 .291

October 382 .421 \.001 .049 .339

November 387 .398 \.001 .082 .109

December 505 .028 .526 –.245 \.001

Table 2 As in Table 1, but by state

Arkansas Louisiana Oklahoma Texas

Number of nonzero damage county–months (1975–2010) 1137 162 836 3676

Pearson r (PDSI vs. damage) –.366 –.170 .054 –.087

p value \.001 .030 .119 \.001

Pearson r (PHDI vs. damage) –.273 –.206 .250 –.210

p value \.001 .008 \.001 \.001
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suggest that alternative sources of water may prevent damage during long runs of dry

hydroclimatic conditions.

The monthly correlations between drought duration and drought indices within Texas

are displayed in Table 6. Significant positive correlations to the PDSI are observed for all

seasons and for nine of the 12 months, with all nonsignificant months falling between May

and August. A slightly weaker set of correlations to the PHDI were found, with only

5 months from January through August displaying significant positive correlations

(p\ 0.05). The reason for significant negative correlations between damage and the

number of months of drought duration in June for both drought indices, and for November

in the PHDI analysis, is unclear, excepting that a type I error can be expected to occur an

average of 5 % of the time in a random distribution.

In recognition of the notion that drought damage may only be reported months after its

occurrence, 12-month aggregated damage beginning on the month associated with a given

drought index was computed and correlated with drought indices, again by county–month

(Table 7). In general, these correlations were strong, but not quite as strongly negative as

those for real-time monthly reported damage (compare Tables 1 and 7). Interestingly, at

the state level for all states except Texas, many of the correlations become positive when

damage is accumulated over the 12-month window (compare Tables 2 and 8). Perhaps

losses can be mitigated over longer periods; as once the damage is done, there is little else

to damage, even if the drought indices remain low for the duration of the 12-month period.

Again, the small number of months with nonzero drought damage prevents an analysis by

month and state. Nevertheless, results from Texas suggest that the 12-month aggregated

drought damage shows similarly strongly significant correlations between aggregated

losses and drought indices (Table 9), as compared with drought index correlated with

damage reported in the concurrent month (Table 3). The dominance of Texas drives the

trends in the entire dataset.

Table 3 As in Table 1, but for Texas only

Month or season Number of nonzero
damage county–months
(1975–2010)

r (PDSI vs.
damage)

p value r (PHDI vs.
damage)

p value

Winter (D–J–F) 942 –.259 \.001 –.353 \.001

Spring (M–A–M) 953 –.413 \.001 –.184 \.001

Summer (J–J–A) 893 –.113 .001 –.276 \.001

Autumn (S–O–N) 888 .246 \.001 –.008 .818

January 286 –.699 \.001 –.511 \.001

February 261 –.323 \.001 –.238 \.001

March 289 –.345 \.001 –.323 \.001

April 299 –.431 \.001 –.372 \.001

May 365 –.404 \.001 –.145 .005

June 269 –.373 \.001 –.415 \.001

July 285 –.201 .001 –.262 \.001

August 339 .154 .005 –.278 \.001

September 232 –.395 \.001 –.219 .001

October 314 .470 \.001 –.040 .483

November 342 .413 \.001 .033 .545

December 395 .030 .557 –.346 \.001
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5 Summary and conclusions

This research examined the relationships between drought intensity and duration (repre-

sented by empirically downscaled climate-divisional-level PDSI and PHDI data to the

county level) and reported drought damage (standardized to 2011 CPI), across the 503

Table 4 Pearson correlations between drought duration (i.e., number of consecutive months with a drought
index of -1.0 or below, beginning on the month when the damage is reported) and drought damage (2011
CPI-adjusted dollars), for county–months with nonzero drought damage totals, 1975–2010

Month or
season

PDSI PHDI

Number of
nonzero damage
county–months
(1975–2010)

Pearson
r (\-1.0
PDSI duration
vs. damage)

p value Number of
nonzero damage
county–months
(1975–2010)

Pearson
r (\-1.0
PHDI duration
vs. damage)

p value

Winter
(D–J–F)

841 .283 \.001 825 .052 .137

Spring
(M–A–M)

992 .292 \.001 951 .341 \.001

Summer
(J–J–A)

1332 .013 .630 1361 .015 .571

Autumn
(S–O–N)

742 .274 \.001 647 –.160 \.001

January 253 .459 \.001 268 .080 .192

February 270 .243 \.001 238 .099 .129

March 302 .522 \.001 286 .432 \.001

April 254 .391 \.001 285 .483 \.001

May 436 .172 \.001 380 .250 \.001

June 412 .028 .568 389 –.023 .651

July 487 .024 .603 479 .012 .788

August 433 –.103 .032 493 .112 .013

September 322 .368 \.001 327 –.086 .120

October 205 .271 \.001 150 .047 .565

November 215 .088 .196 170 –.309 \.001

December 318 .188 .001 319 –.070 .216

Table 5 As in Table 4, but by state

Arkansas Louisiana Oklahoma Texas

Number of nonzero damage county–months
(1975–2010) for PDSI

624 133 620 2530

Pearson r (PDSI vs. 12-month damage) .113 –.022 –.181 .213

p value .005 .802 \.001 \.001

Number of nonzero damage county–months
(1975 - 2010) for PHDI

640 127 723 2291

Pearson r (PHDI vs. 12-month damage) –.001 .005 –.228 .132

p value .982 .959 \.001 \.001
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counties in a five-state region of the south-central USA. Despite some limitations of the

datasets, this study is important because of its use of SHELDUSTM, the only ‘‘widely used,

nonproprietary, Web-based database’’ (Gall et al. 2009) of its kind, to address drought

damage in terms of monetary losses. This research is also valuable because of its inves-

tigation of the role of lagging of drought reporting, which supports Gall et al.’s (2009)

finding that a lag of coverage from *180 to 600 days is possible in SHELDUSTM. In

addition, this study represents one of the first attempts to match the spatial and temporal

scale of SHELDUSTM data with PDSI/PHDI index.

Results suggest that relatively few months (only 5749 of the 217,728 county–months)

contained any drought damage, supporting the established notion that drought is under-

reported. Drought damage correlation with index does vary widely by state, with the more

drought-exposed state of Oklahoma seeing weaker, and even positive correlations. Drought

duration is also correlated with drought indices, with comparable strength between PDSI

and PHDI. Furthermore, results suggest that even though drought intensity is an important

predictor of simultaneous economic damage, drought damage for the next 12 months is

also relatively predictable based on the current month’s drought index. Nevertheless, it is

likely that relatively little damage may occur near the end of a prolonged drought as

compared to a shorter drought of the same intensity, because damage will have already

been done in the longer drought, thereby weakening correlations between drought

Table 6 As in Table 4, but for Texas only

Month or season PDSI PHDI

Number of
nonzero
damage
county–months
(1975–2010)

Pearson
r (\-1.0
PDSI
duration
vs. damage)

p value Number of
nonzero
damage
county–months
(1975–2010)

Pearson
r (\-1.0
PDSI
duration
vs. damage)

p value

Winter
(D–J–F)

695 .330 \.001 598 .177 \.001

Spring
(M–A–M)

748 .241 \.001 714 .351 \.001

Summer
(J–J–A)

574 .251 \.001 616 .220 \.001

Autumn
(S–O–N)

513 .445 \.001 363 –.107 .042

January 202 .434 \.001 184 .226 .002

February 219 .246 \.001 174 .143 .060

March 251 .535 \.001 229 .554 \.001

April 195 .379 \.001 233 .534 \.001

May 302 .005 .938 252 .107 .091

June 207 –.288 \.001 184 –.386 \.001

July 213 .504 \.001 208 .525 \.001

August 154 .066 .413 224 .201 .003

September 166 .586 \.001 140 –.019 .827

October 163 .392 \.001 95 .174 .091

November 184 .192 .009 128 –.259 .003

December 274 .262 \.001 240 .102 .114
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intensity, duration, and damage. Moreover, drought damage appears to be reported at

widely varying time lags and considerable variation may occur in the lag relationship

across space and time of year, likely because different crops are grown in different parts of

the study area and each crop has a different tolerance and resilience to drought intensity

and duration. On the whole, drought indices appear to be useful indicators of drought

damage, at least at the monthly temporal scale and/or county-wide spatial scale. This is an

important finding, as long-lead climate outlooks continue to provide rapid improvement in

our ability to anticipate, plan for, and mitigate the effects of incipient drought. Never-

theless, caution must be exercised in the extent to which drought index is used as a

predictor of drought damage. Undoubtedly, the human factor also confounds the correla-

tions. For example, irrigation practices differ spatially and temporally, thereby weakening

the relationship, whether lagged or not.

Future research is needed in at least two areas related to this topic. First, a compre-

hensive analysis of the utility of SHELDUSTM for assessing drought damage should be

Table 7 As in Table 1, but for aggregated 12-month drought damage beginning in the month of the index

Month or season Number of nonzero
damage county–months
(1975–2010)

r (PDSI vs.
damage)

p value r (PHDI vs.
damage)

p value

Winter (D–J–F) 5130 –.084 .000 –.081 .000

Spring (M–A–M) 5180 –.079 .000 .056 .000

Summer (J–J–A) 5668 –.137 .000 –.111 .000

Autumn (S–O–N) 5149 –.038 .007 –.071 .000

January 1758 –.144 .000 –.095 .000

February 1745 .007 .770 .023 .334

March 1748 .001 .966 .107 .000

April 1727 –.131 .000 .051 .036

May 1705 –.108 .000 .017 .484

June 1766 –.211 .000 –.099 .000

July 1959 –.228 .000 –.240 .000

August 1943 –.055 .016 –.049 .031

September 1839 –.049 .035 –.058 .013

October 1656 –.005 .839 –.055 .025

November 1654 –.062 .012 –.104 .000

December 1627 –.117 .000 –.138 .000

Table 8 As in Table 2, but for aggregated 12-month drought damage beginning in the month of the index

Arkansas Louisiana Oklahoma Texas

Number of nonzero damage county–months (1975–2010) 4464 1458 2898 12,271

Pearson r (PDSI vs. 12-month damage) .170 .034 .191 –.219

p value \.001 .197 \.001 \.001

Pearson r (PHDI vs. 12-month damage) .306 .030 .259 –.215

p value \.001 .253 \.001 \.001
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undertaken, perhaps by linking vulnerability model output to the damage estimates. Sec-

ond, research is needed to understand more fully the role of policy and land use in

exacerbating or mitigating drought damage. Moreover, future research should emphasize

the application of a social–ecological resilience framework to examine the linkages

between the exposure of residents and farmers to drought conditions, their vulnerability to

that exposure (i.e., crop or property damages), and their ability to adapt, so that damages

associated with future droughts can be mitigated.
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