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An Evaluation of Fractal Methods for
Characterizing Image Complexity

Nina Siu-Ngan Lam, Hong-lie Qiu, Dale A.
Quattrochi and Charles W. Emerson

ABSTRACT: Previously, we developed an integrated software package called ICAMS (Image
Charactel-ization and Modeling System) to provide specialized spatial analytical functions for inter-
preting remote sensing data. This paper evaluates three fractal dimension measurement methods that
have been implemented in ICAMS: isarithm, variogram, and a modified version of triangular prism.
To provide insights into how the fractal methods compare with conventional spatial techniques in
measuring landscape complexity, the performance of two spatial autocorrelation methods, Moran's I
and Geary's C, is also evaluated. Results from analyzing 25 simulated surfaces having known fractal
dimensions show that both the isarithm and triangular prism methods can accurately measure a range
of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension
of surfaces having higher spatial complexity, but it is sensitive to contrast stretching. The variogram
method is a comparatively poor estimator for all surfaces, particularly those with high fractal dimen-
sions. As with the fractal techniques, spatial autocorrelation techniques have been found to be useful
for measuring complex images, but not images with low dimensionality. Fractal measurement methods,
as well as spatial autocorrelation techniques, can be applied directly to unclassified images and could
serve as a tool for change detection and data mining.

KEYWORDS: Fractal measurement, spatial autocorrelation, simulated surfaces, data mining

Introduction

The rapid increase in digital data volumes
from new sensors, such as NASA'sEarth
Observing System (EOS), Landsat-7, and

commercial satellites, raises a critical problem-how
can such an enormous amount of data be handled
and analyzed efficiently? Efficient handling and
analysis of large spatial data sets is central to
research that utilizes various layers of information
in different time periods. For example, long-term
global change investigations require that new high-
resolution data be combined with older, lower res-
olution images. Analyses of natural disasters such
as hurricanes, fires, and earthquakes typically use
time series of satellite imagery for rapid change
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detection and continuous monitoring. Advances
in this type of large-scale spatial research require
not only high-quality data sets, but also reliable
tools to handle and analyze these data sets.

In a previous project, we developed a software
module called ICAMS (Image Characterization
and Modeling System) to address the above need
by focusing on the development of innovative spa-
tial analytical tools and then bundling the tools
together in a module so that it can be accessed
by the broader research community. Detailed
descriptions of the theoretical background and the
practical need for developing ICAMS, as well as its
system design and functionality, can be found in
Quattrochi, et al. (1997) and Lam, et al. (1998). In
brief, ICAMSis a software module designed to run
on Intergraph-MGE and Arc/Info platforms that
provides specialized spatial analytical functions for
characterizing remote-sensing images. The main
functions of ICAMSare fractal analysis, variogram
analysis, spatial autocorrelation analysis, texture
analysis, land/water and vegetated/non-vegetated
boundary delineation, temperature calculation,
and scale analysis.

This paper focuses on the use of the fractal
module in ICAMS. Specifically, we evaluate the
performance of three fractal surface measure-
ment algorithms that have been identified in the
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where:
L = length of the curve;
8 = step size;
B = slope of the regression; and
K = a constant.
From the above equations, D is a function of

the regression slope B. The steeper the negative
slope (8 is a negative value), the higher the fractal
dimension. The D value of a surface can be esti-
mated in a similar fashion and is discussed in the
next section.

Applications of fractals generally fall into two
groups. The first uses the fractal model to simu-
late real-world objects for both analytical and
display purposes. Fractals are commonly used in
computer graphics because they can simulate life-
like landscapes, cities, or objects for video garnes,
movies, and a variety of virtual reality applications
(Peitgen and Saupe 1988; Batty and Longley 1994).
Moreover, simulated fractal surfaces (fractional
Brownian motion (iBm) surfaces) or curves are
regarded as ideal theoretical test data sets for test-
ing a number of methods and models (Goodchild
1980; Goodchild and Mark 1987). In cartography
and GIS, for example, fractal surfaces have been

fractal geometry, the fractal dimension (D), is a non-
integer value that, in Mandelbrot's (1983) original
definition for fractals, exceeds the Euclidean topo-
logical dimension. As the form of a point pattern,
a line, or an area feature growsmore geometrically
complex, the fractal dimension increases. The
fractal dimension of a point pattern can be any
value between zero and one, a curve between one
and two, and a surface between two and three.
Increasing the geometrical complexity of a per-
fectly flat two-dimensional surface (D=2.0) so that
the surface begins to fill a volume, results in D
values approaching 3.0.

Self-similarityis the foundation for fractal analy-
sis (Mandelbrot 1983),and is defined as a property
of a curve or surface where each part is indistin-
guishable from the whole, or where the form of
the curve or surface is invariant with respect to
scale. The degree of self-similarity,expressed as a
self-similarity ratio, is used to define the theoreti-
cal fractal dimension. In practice, a common way
to estimate the D value of a curve (e.g., a coastline)
is to measure the length of the curve using vari-
ous step sizes. The more irregular the curve, the
greater the increase in length as step size increases.
D can be estimated by the following equations:

literature and implemented in ICAMS: isarithm,
variogram, and triangular prism. The purpose
of this study is to provide benchmark information
on the applicability and reliability of these fractal
methods for characterizing landscape complexity
using remote sensing imagery.

Fundamental research on the applicability and
reliability of new spatial analytical techniques,
such as fractals, is necessary. Although the fractal
technique has been applied extensively, its use
as a spatial technique for characterizing remote
sensing images is rather uncommon and needs
to be evaluated more thoroughly. In the past, it
was difficult to apply the fractal technique because
fractal algorithms were scattered throughout the
literature of diverse disciplines such as meteorol-
ogy (Lovejoy and Schertzer 1985), astronomy
(Barbanis et a1. 1999), and materials science (Lu
and Hellawell 1995), and they were not necessar-
ily designed to work with remote sensing images.
With ICAMS and its fractal module, where the
three m~or surface measurement methods iden-
tified in the literature (isarithm, variogram, and
triangular prism) are modified and implemented,
fractal measurement has become easier.

In this study, fractional Brownian motion (fBm)
surfaces with known fractal dimensions are gen-
erated to evaluate the performance of the three
fractal surface measurement methods. A compari-
son beuveen known and computed fractal dimen-
sions provides an assessment of the reliability
and effectiveness of the three fractal methods for
characterizing and measuring landscape patterns.
Furthermore, to provide insight into how the frac-
tal methods compare with conventional spatial
techniques in measuring landscape complexity,
this study also evaluates the performance of two
spatial autocorrelation methods: Moran's I and
Geary's C. Finally, since fractals are of particular
use in determining the effects of changes in pixel
resolution as a result of image processing, a sen-
sitivity analysis of the response of the fractal and
spatial autocorrelation indices is conducted.

An Overview of Fractals
Fractal techniques were developed because most
spatial patterns of nature, such as curves and sur-
faces, are so irregular and fragmented that classi-
cal (Euclidean) geometry fails to provide tools for
the analysis of their forms. In Euclidean geometry,
a point has an integer topological dimension of
zero, a line is one-dimensional, an area has two
dimensions, and a volume three dimensions. In

Log L = K + B Log 8

D=l-B

(1)

(2)
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used as test data sets to examine the performance
of various spatial interpolation methods (Lam
1980) and the efficiency of a quad tree data struc-
ture (Mark and Lauzon 1984).

The second group of applications utilizes the
fractal dimension as an index for describing the
complexity of cun'es and surfaces. Goodchild
(1980) demonstrated that fractal dimension could
be used to predict the effects of cartographic gen-
eralization and spatial sampling, a result which
may assist in determining the optimum resolution
of pixels and polygons used in remote sensing
and GIS studies. Various applications of fractals in
geography and the geosciences, such as character-
izing topography (Goodchild and Mark 1987) and
urban landscapes (Batty and Longley 1994), have
been documented in the literature. In particular,
fractal analysis has been suggested as a useful tech-
nique for characterizing remote sensing images as
well as identifying the effects of scale changes on
the properties of images (De Cola 1989, 1993;
Lam 1990; Lam and Quattrochi 1992; Emerson
et al. 1999).

While the fractal model is a fascinating tool for
simulation, its use as a technique for measuring
and characterizing spatial phenomena has raised
criticisms (Goodchild and Mark 1987; Lam 1990).
At the theoretical level, the self-similarity property
underlying the fractal model assumes that the
form or pattern of the spatial phenomena remains
unchanged throughout all scales, which further
implies that one cannot infer the scale of the
spatial phenomena from its form or pattern. This
has been considered unacceptable in principle by
a number of researchers. Empirical studies have
shown that most spatial phenomena are not pure
fractals with a constant D, but instead D varies
across a range of scales. Rather than using D in
the strict sense as defined by Mandelbrot (1983),
many researchers nowadays realize that strict self-
similarity is rare in natural phenomena, and that
self-similarity must be estimated statistically and
at certain scale ranges (Milne 1991). These find-
ings, however, can be used positively. Lam and
Quattrochi (1992) suggested that information on
the changes of D with scale could be used to sum-
marize the scale changes of the phenomena and
to interpret their underlying processes at specific
ranges.

At the technical level, a major impediment to
applying fractal measurements is that there are
very few algorithms readily available to research-
ers for experimentation. For those who can access
the fractal algorithms, the frustration is that the
results from applying differing algorithms often
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contradict each other (Tate 1998). A thorough
evaluation of the various fractal measurement
techniques, such as the three fractal techniques
mentioned above, is necessary before they can be
used to reliably characterize and compare changes
in landscapes. Integrated software packages such
as ICAMS make it easier to carry out the evalua-
tion tasks.

In a broader sense, the fractal technique may
be considered a textural measure for measuring
image complexity. As with other texture-based
analytical techniques such as co-occurrence matri-
ces (Haralick et al. 1973), localvariance (Woodcock
and Strahler 1987), wavelets (Mallat 1989), and
spatial autocorrelation statistics (Cliff and Ord
1973), fractals have shown great potential in char-
acterizing landscape patterns for global environ-
mental studies. Unlike many spatial indices used in
landscape ecology such as contagion, dominance,
and interspersion, the three fractal measurement
methods and the spatial autocorrelation statistics
implemented in ICAMS can be applied directly
to unclassified images. This property makes them
potentially useful tools for summarizing the spatial
characteristics of the image (i.e., metadata repre-
sentation), data mining, and change detection
without the need for prior image classification.
Ultimately, these methods can be used for environ-
mental assessment and monitoring. A thorough
evaluation and comparison of these methods is
needed to identify their pros and cons in charac-
terizing remote-sensing images.

Methods

Fractional Brownian Surfaces
To provide a benchmark for evaluating the three
fractal surface measurement methods and the
indices of spatial autocorrelation (Moran's I and
Geary's C), fractional Brownian motion (fEm)
surfaces with varying degrees of complexity (i.e.,
fractal dimension) were generated using the shear
displacement method (Peitgen and Saupe 1988;
Goodchild 1980; Lam and De Cola 1993; Tate
1998). The method starts with a surface of zero
altitude represented by a matrix of square grids. A
succession of random lines or cuts across the sur-
face is then generated, and the surface is displaced
vertically along each random line to form a cliff.
This process is repeated until several cliffs are cre-
ated between adjacent sample points. The set of
random lines generated has the property that their
points of intersection form a Poisson point process,
while the angles of intersection are distributed
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Dti + 1.The addition of" 1" isneeded to extend
fr~~ma one-dimensional curve to a two-dimen-
sional surface measurement. Analogous to the
walking-divider method for measuring lines, the
algorithm implemented in ICAMS evolved from
methods proposed in Goodchild (1980), Shelberg
et al. (1983), and Lam and De Cola (1993). In
order to use the isarithm method in ICAMS, a
data matrix of a given number of rows and col-
umns must be specified, with the followingparam-
eter input by the user: the number of step sizes
to be used to measure the length of the isarithm;
the isarithm interval (to determine which isarithm
is going to be measured); and the direction from
which the operation proceeds (either row,column,
or both).

For each isarithm value and step size, the
algorithm classifies pixels below and above the
isarithm value as white and black, respectively. It
then compares each neighboring pixel along the
rows or columns and determines if the pairs are
both black or both white. If they are of different
colors, it implies that an isarithm lies between two
neighboring pixels, which are then recorded as
boundary pixels. The length of each isarithm line
is approximated by the total number of boundary
pixels. It is possible that for a given step size there
are no boundary pixels. In this case, the missing
isarithm line is excluded from the analysis. The

Figure 1. Three simulated surfaces and corresponding images
from top to bottom, 0 = 2.1, 2.5, and 2.9.

(3)E[z. - Z .}2 = Idl 2/1
l (rl+J

Fractal Measurement Methods

uniformly between 0 and 2rc. The heights of
the cliffs are controlled by the parameter H,
which determines how the variance between
two points relates to the separation distance. In
other words, H describes the persistence of the
surface and has values between 0 and 1. H is
defined as:

where E[Zi - Z(d+il is the expected variance
between two points having a distance d. The
fractal dimensions of the simulated surfaces
are equal to D = 3 - H (Mandelbrot 1975;
Goodchild 1980; Lam 1980).

Figure 1 shows the effect of the H param-
eter. A surface with D = 2.1 (H = 0.9) is quite
smooth with similar Z values occurring in adja-
cent areas. Increasing D to 2.5 results in a less
smooth, less uniform surface. The surface with
D = 2.9 (H = 0.1) is quite rough, with high and
low values occurring at closely spaced intervals.
The FORTRAN code for generating these frac-
tal surfaces can be found in Lam and De Cola
(1993).

To test which method (both fractals and spa-
tial autocorrelation) measures image complexity
more accurately, five 512 x 512 surfaces for each
H level (0.1, 0.3, 0.5, 0.7, and 0.9) were generated
using 3000 cuts. For each set of surfaces with vary-
ing H, identical seed values were used in order to
generate the same sequence of random cuts and,
therefore, visualize more easily the increase of
complexity as H decreases. The resulting fileswere
converted to 8-bit images normalized to digital
numbers from 0 to 255. This generated five sets of
simulated surfaces with fractal dimensions of 2.1,
2.3,2.5,2.7, and 2.9.

The three fractal surface measurement methods
that have been implemented in ICAMS-the
isarithm, variogram, and triangular prism
methods-have been applied to real data and doc-
umented in detail in various studies (e.g., Lam and
De Cola 1993; Jaggi et al. 1993; Xia and Clarke
1997). Except in a preliminary study (Lam et al.
1997), however, they have not been systematically
evaluated using controlled, synthetic surfaces with
a range of spatial complexity. The use of con-
trolled surfaces provides a standard for compari-
son, thereby illuminating the major characteristics
and differences among the methods.

The isarithm method uses the length of contours
of surface z-values as a means of determining the
fractal dimension D of the surface, where D .., =

sUtJaa
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Figure 2. Sample output of a fractal analysis using the variogram method. The image on the left is a simulated fractional
Brownian surface of 512x512 pixels with a theoretical 0 = 2.5. The screen on the right shows that the computed 0 is 2.66
with a regression fit r2 = 0.86. The parameters used in the calculation were 20 distance groups and a sampling interval of
every 50th point.

total number of boundary pixels for each step
size is plotted against step size in log-log form
(forming the fractal plot), and a linear regression
is performed. The regression slope b is used to
determine the fractal dimension of the isarithm
line, where D = 2-b. The final D of the surface is
the average of D values for those isarithms that
have an R2 greater than or equal to 0.9.

The variogram method uses the variogram func-
tion to estimate the fractal dimension. The vario-
gram function describes how variance in surface
height between data points relates to their spatial
distance; and it is commonly used in many other
applications such as kriging for characterizing the
spatial structure of a surface. The only difference
between the traditional variogram used in fractal
estimation is that in the present approach, distance
and variance are portrayed in double-log form. To
derive the variogram function for a surface, vari-
ance for all data pairs that fall into a specified
distance interval, r(d), is calculated by:

n

y(d)= (1/2n) ~)Zi -Z(d+i}]2
i=l (4)

where:
n = total number of data pairs that fall in dis-

tance interval d, and
z = surface value.

The slope of the linear regression performed
between these two variables (in double log form)
is then used to determine the fractal dimension D,
where D = 3 - (b/2). Mark and Aronson (1984) pio-
neered the use of the variogram method for fractal
measurement. Detailed discussion of the method
can also be found in Lam and De Cola (1993)
and Jaggi et al. (1993). In ICAMS, the variogram
method requires the following input parameters:
the number of distance groups for computing the
variance, the sampling interval for determining the
number of points used in the calculation, and the
sampling method (regular or stratified random).
Sampling only a subset of points for calculation
is necessary, especially for large data sets such as
remote sensing imagery, since the computational
intensity increases dramatically with an increasing
number of data points.

Figure 2 shows a typical output from the vario-
gram method in IeAMS on the Arc/Info platform.
The window on the left is a simulated fractional
Brownian surface of 512 x 512 pixels with a theo-
retical D = 2.5. The screen on the right shows
that the computed D is 2.66 with a regression fit
r = 0.86. The parameters used in the calculation
were 20 distance groups and a sampling interval of
every 50th point.

The triangular prism method (Clarke 1986;
Jaggi et al. 1993) constructs triangles by connect-
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Spatial Autocorrelation Methods
ICAMS also contains modules for analyzing the
spatial autocorrelation of images. Moran's I and
Geary's C, two indices of spatial autocorrelation
(Cliff and Ord 1973), have been commonly used
to measure the spatial autocorrelation of polygons,
but they have seldom been applied to measure
images. Thus, their performance needs to be
evaluated and compared with that of the fractal
methods. Moran's I is calculated from the follow-
ing formula:

Unlike the isarithm method, the triangular prism
method can be affected by the range of z values
because the method compares area (unit squared)
with grid cell length (unit). This is an important
property that was not pointed out in previous lit-
erature. In order to make the fractal dimensions of
various surfacescalculatedfrom the triangular prism
method comparable, normalization of the z values
is necessary.To demonstrate this effect, a sensitivity
analysisof the three fractal dimension measurement
methods wasperformed, and the effectsof contrast
stretching on the resultant fractal dimensions are
demonstrated below.

ing the heights or z-values at the four corners of a
grid cell to its center, with the center height being
the average of the pixels at the four corners. These
triangular "facets" of the prism are then summed
to represent the surface area. In the second step,
the algorithm increases the step size from one
?ixel to two pixels, thus forming 2 x 2 composites
of four adjacent pixels. The corners of each 2 x 2
pixel composite are defined by the values of the
four adjacent 2 x 2 pixels, and the center value is
their average. The areas of the triangular prisms
for all 2x2 composites are then calculated and
summed. The algorithm continues until it reaches
to the maximum step size specified by the user. The
logarithm of the total of all the prism facet areas at
each step is plotted against the logarithm of step
size (number of pixels), and the fractal dimension
is calculated by performing a linear regression on
the surface areas and step sizes.

The triangular prism method implemented in
ICAMS is different from the original algorithm
discussed in Clarke (1986) and Jaggi et al. (1993).
We show below that step size (0) instead of step size
squared (0 2) should be used to regress with the
prism areas to derive the correct fractal dimen-
sion. Consider the basic equations for defining
the dimension of a fractal curve such as the Koch
Curve (Mandelbrot 1967; Feder 1988):

N(o) = KOD (5)

n n

nL LWijZiZj
I(d) = i j

wI,zi
(10)

Rearranging the above equation into logarith-
mic form becomes:

where:
o = step size;
N(o) = number of steps;
L(o) = length of the curve; and
K = a constant.
To extend the curve definition to area, we can

deduce the following expression of fractal dimen-
siol'. for an object whose area isA and step size 0:

L(o) = N(o)o = Ko I-D

A(o) = N(o)o 2 = Ko 2-D

Log A = K + (2-D) Logo

(6)

(7)

(8)

where:
w = weight at distance d, so that
Jij = 1 if point j is within distance d of point i,

otherwise w .. = 0;y
z's = deviations (i.e., z.= x - x for variable x);

and 1 I mean

W = the sum of all the weights where i :f- j.
Moran's I varies from + 1.0 for perfect positive

autocorrelation (a clumped pattern) to -1.0 for
perfect negative autocorrelation (a checkerboard
pattern).

Geary's C contiguity ratio, another index of
spatial autocorrelation that is similar to Moran's I,
uses the formula:

where:

B = (2-D) is the slope of the regression;
K = a constant, and therefore:

(n-I)I,I,Wij( Xi-Xj f
C( d)= i j

2WI,Zi
2

i

(11)

Hence, the original algorithm was modified and
implemented in ICAMS(Zhao 2001).

D = 2-B (9)
with the same terms listed above. Geary's C nor-
mally ranges from 0.0 to 3.0, with 0.0 indicating
positive autocorrelation, 1.0 indicating no auto-
correlation, and values greater than 1.0 indicating
negative autocorrelation.

30 CartograPhy and GeograPhic Information Science



Surface Triangul;:>r
Fractal Isarithm Prism Variogram Mean Standard Moran's I Geary's C

Dimension D D D Deviation

2.9 2.9989 2.9114 3.0518 132.0440 23.4960 0.1838 0.8172

2.7 2.8525 2.7233 2.9752 127.6700 28.6640 0.8390 0.1610

2.5 2.5192 2.3703 2.7007 123.3600 42.5840 0.9949 0.0051

2.3 2.1661 2.0718 2.1853 128.6760 53.0580 0.9999 0.0001

2.1 2.0424 2.0390 2.0140 129.6000 57.3720 1.0000 0.0000

Table 1. Summary statistics for the simulated surfaces.

Image Resampling and Contrast
Stretching
Image resampling is used when images are recti-
fied, in analyses of scale effects, or when older,
low-resolution imagery is combined with newer
high-resolution images. Bilinear resampling
uses the four closest neigh!:ors to perform a two-
dimensional linear interpolation to obtain the
output cell value (the output cell can be of any size
or orientation). This averaging process reduces
the dynamic range of the output brightness values,
which is frequently overcome by contrast stretch-
ing. The effects of this resampling procedure on
the performance of different fractal and spatial
autocorrelation methods vary. To investigate these
effects, a 1024 x 1024 pixel fractional Brownian
surface having a known fractal dimension of 2.9
was generated. This produced a complex surface
in which the brightness values change rapidly
within a short distance. Bilinear resampling was
used to reduce the resolution of the image, result-
ing in resampled images having 512 x 512, 256 x
256, 128x 128, and 64 x 64 pixels. The pixel sizes
ranged from one pixel width in the original sur-
face, to resampled pixels that were two, four, eight,
and sixteen pixels wide.

Results and Discussion
Table 1 lists the descriptive statistics for the 512
x 512 simulated surfaces, which show that as D
increases, the standard deviation of the surface
generally decreases. Standard deviation does not
measure the spatial arrangement of the bright and
dark pixels, just their relationship to the mean
brightness value. In other words, standard devia-
tion, which is a non-spatial measure of variation,
bears no relationship with D, a spatial measure
of variation. A moderate inverse relationship
between fractal dimension and standard devia-
tion has also been reported in previous studies
where real remote-sensing images were measured

l1J1.29, No.1

(Lam et al. 1998). In that study, it was suggested
that both spatial and non-spatial indices, such as
fractal dimension and standard deviation, could
be used together to form a broad impression of
an image even without viewing it. Therefore, they
should be considered as part of the metadata (i.e.,
key descriptors) for the image. For example, when
an image has a high standard deviation but a
relatively lowfractal dimension (such as the D=2.1
surface in Figure 1), the surface would most likely
exhibit a spatially homogeneous pattern with a
detectable trend. On the contrary, if an image has
a low standard deviation but a high fractal dimen-
sion (such as the D=2.9 surface), the surface is
much more fragmented and spatially varying.

Fractal Measurement Methods
The isarithm, triangular prism, and variogram
fractal measurement methods were used on each
of the 25 simulated surfaces. tor the isarithm
method, the input parameters were number of
step sizes = 5, isarithm interval = 10, and direc-
tion of operation = both row and column. The
input parameters for the variogram method were
20 distance groups and sampling every 20th pixel
from both rowsand columns of a regular grid. The
only input parameter required by the triangular
prism method is number of step sizes; as with the
isarithm method, it was fixed to five step sizes. The
slope of the regression based on these five steps
was used to compute fractal dimension in the isa-
rithm and triangular prism methods.

Figure 3 shows the average fractal dimension
D for each of the five sets of fractional Brownian
surfaces. The triangular prism method is the
best estimator for the rougher surfaces with frac-
tal dimensions of 2.9 and 2.7, although it is less
accurate at D = 2.5 and 2.3. For fractal dimen-
sions around 2.5, the isarithm method is the
most accurate. All the methods underestimate
the fractal dimension for the D = 2.3 and 2.1
surfaces. Root mean squared errors (RMSE) for
each set of surfaces by each fractal method were
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Figure 3. Comparison between mean estimated fractal dimension and
theoretical fractal dimension.

1heoretical Fractal Dimension

computed by taking the square root of the
average of the sum of squared differences
between the estimated and the theoretical
fractal dimensions. The results are shown
in Table 2. Both the isarithm and the
triangular prism methods yield similar
RMSE (0.1068 and 0.1082), and they are
generally lower than that of the variogram
method. The triangular prism method has
the worst RMSE for D = 2.3 surfaces, but
best RMSE for D = 2.7 and 2.9 surfaces.
The isarithm method is generally the best
estimator for the three smoothest surfaces,
while the variogram method is a compara-
tively poor estimator for all of the surfaces,
particularly those with higher fractal
dimensions.
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spatial autocorrelation techniques are ineffective
and do not reflect accurately the complexity of the
simulated surfaces.

Resampling and Contrast Stretching
The triangular prism and isarithm methods for
measuring fractal dimension and Moran's I and
Geary's C indices of spatial autocorrelation were
examined for their sensitivity to resampling and
contrast stretching. The variogram method for
measuring fractal dimensions was not evaluated
in this analysis due to its instability when used on
small images having relatively few pixels. A spa-
tially complex, 1024 x 1024 fractional Brownian
surface having a specified H value of 0.1 (D
2.9) was used in this analysis. Figure 5 shows that
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As expected, there is an inverse relation-
ship between Moran's I and Geary's C, as
shown in Table 1 and displayed in Figure
4. The more complex surfaces with higher
fractal dimension are more random in
their spatial configurations and have
Moran's I values close to 0.0 and Geary's
C values close to 1.0 (negatively autocor-
related). The smoother surfaces with low
fractal dimensions have Moran's I values
of 1.0 and Geary's C values of 0.0 (posi-
tively autocorrelated).

Unlike the fractal methods, no RMSE
were computed for the spatial autocorrela-
tion statistics, as there were no theoretical
spatial autocorrelation values for each set
of D surfaces. However, the spatial auto-
correlation values computed for each set
of surfaces were very similar, with variance
close to zero; therefore, the mean Moran's
I and Geary's C values could be used to compare
with the theoretical fractal dimension. In compar-
ing the spatial autocorrelation statistics with the
theoretical fractal statistics, the results presented
in Figure 4 show that Moran's I (and by extension,
Geary's C) could be used to measure the spatial
complexity for surfaces with D > 2.5. Moran's
I value decreases (Geary's C increases) as D
increases, with a noticeble drop Uump for Geary's
C) from D = 2.7 to D = 2.9. Although the range
of Moran's I values is small, recent studies have
shown that these small differences can be used to
discriminate surface features as accurately as the
fractal techniques (Myint 2001). For surfaces with
lower fractal dimensions, this study shows that the
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Conclusions
The three fractal surface measurements methods
implemented in ICAMS, including the isarithm,
variogram, and modified triangular prism meth-

Surface Fractal Triangular
Dimension Isarithm Prism Variogram

2.9 0.1011 0.0463 0.1544
2.7 0.1532 0.0656 0.2818
2.5 0.0236 0.0845 0.3008
2.3 0.1364 0.2066 0.1575
2.1 0.0647 0.0478 0.0868

All Surfaces 0.1068 0.1082 0.2126

the triangular prism method is strongly affected
by reductions in image contrast. Smoothing an
image by averaging larger and larger groups of
pixels into a coarser resolution image results in a
sharp drop off in D from slightly higher than the
simulated value of 2.9 to a D value close to 2.5.
Stretching the range of pixel values back to the
original 0 to 255 range reduces the drop in mea-
sured fractal dimension.

The isarithm method is not as strongly affected
by contrast stretching. In Figure 5, the isarithm
method overestimates the simulated surface frac-
tal dimension of 2.9, regardless of whether the
dynamic range is restored by stretching or not.
Since the isarithm interval is fixed, the fractal
dimension is estimated from fewer isarithms in the
unstretched images (when there is a smaller range
of values) than it would be in an image stretched
to the full dynamic range. l<orboth the triangular
prism and isarithm methods, the fractal dimen-
sion measurement is relatively stable as the image
is resampled to coarser resolutions, as indicated
by the generally horizontal trend in these plots
(except in the case of un stretched triangular prism
measurements). This is a characteristic of the ideal
fractal nature of the fractional Brownian surfaces
used in this analysis. The coarser versions of the
original surface are similar in complexity to the
original, particularly if they are normalized to the
entire 0 to 255 dynamic range of pixel values. Real
images of the earth depart from this fractal ideal,
and often exhibit complex responses to changes in
resolution (Emerson et al. 1999).

Figure 6 shows measurements of Moran's I and
Geary's C on the same 1024 x 1024 images. In
this case, contrast stretching has little effect on
either index, although there is a tendency for the
two indices to converge to a value of 0.5 as many
smaller pixels are averaged into fewer larger ones.

ods, were evaluated using
25 simulated surfaces
of varying degrees of
complexity. Based on the
results from this analysis,
we conclude that both
the isarithm and triangu-
lar prism methods can be
used to accurately ana-

Table 2. Root mean squared error for estimated fractal dimension of the simulated surfaces. Iyze images over a range
of fractal dimensions,

although the triangular prism method is best for
highly complex surfaces that are characteristic of
remotely sensed imagery. The triangular prism
method, however, is sensitive to the actual ranges
of values. To ensure comparability and accuracy
of measurement, the range of values should be
normalized before computation by the triangular
prism algorithm. The variogram method may not
be appropriate for complex images, as it tends to
yield higher fractal dimension estimates than the
other methods. The variogram method, however,
would be useful for measuring fractal surfaces of
low dimensions. The spatial autocorrelation tech-
niques are useful for measuring complex images,
but not images with low dimensionality.

These results are useful for research on develop-
ing and improving spatial analytical techniques
and our continuous updating and new imple-
mentations in ICAMS.These techniques could be
used to examine a host of related research ques-
tions. For example, fractal measurement could be
used to determine if different environmental and
ecological landscapes and processes (e.g., coast-
lines, vegetation boundaries, and wetlands) have
characteristic fractal dimensions. With accurate
measurement methods, these fractal techniques
could be used to identify regions of varying
degrees of complexity, and ultimately be used as
a part of metadata or as a tool for data mining
or change detection without the need to classify
images beforehand, thereby increasing the effi-
ciency of continuous environmental monitoring. It
is also possible to apply fractal techniques locally
to achieve more accurate feature identification
and change detection. Research is underway to
explore these latest applications. For example, we
are currently adding modules to ICAMS for local
fractal and wavelet analysis. We also plan to fur-
ther evaluate the applicability of these fractal and
related spatial measurement methods for monitor-
ing environmental changes in a number of locali-
ties, such as Xinjiang, China, and Atlanta, USA,
where field investigations are currently underway.
Furthermore, we will utilize the multi-resolution
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Figure 5. Effect of resampling and contrast stretching on computed fractal
dimensions.

3.20 -property of different types
of imagery and spatial data
to gain a better understand-
ing of the impact of scale on
the analysis of environmental
phenomena.
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