
Abstract
The conventional spectral-based classification techniques
have often been criticized due to the lack of consideration of
images’ spatial properties. This study evaluates and compares
two lacunarity methods, fractal triangular prism, spatial
autocorrelation, and original spectral band approaches in
classifying urban images. Results from this study show that
the traditional spectral-based classification approach is
inappropriate in classifying urban categories from high-
resolution data. The fractal triangular prism approach was
also found to be ineffective in classifying urban features.
Spatial autocorrelation was more accurate than the fractal
approach. The overall accuracies in this study for the fractal,
conventional spectral, spatial autocorrelation, lacunarity
binary, and lacunarity gray-scale approaches were 52 percent,
55 percent, 78 percent, 81 percent, and 92 percent, respec-
tively. These findings suggest that the lacunarity approaches
are far more effective than the other approaches tested and
can be used to drastically improve urban classification
accuracy.

Introduction
When extracting urban/suburban information from remotely
sensed data, high spatial resolution images are needed to
accurately distinguish the various urban features. The higher
the spatial resolution of remotely sensed data, the higher
the level of detailed objects and features in urban areas
(e.g., single-family versus multi-family houses, roads, trees,
grass, and parking lots) become apparent; therefore, the
spectral response of an urban environment as a whole
becomes more complex. When dealing with high-resolution
remotely sensed data for urban land use and land cover
mapping, the traditional spectral-based image classification
techniques (sometimes referred to as per-pixel classifiers)
have proven inadequate due to the lack of consideration of
images’ spatial properties (Green et al., 1993; Muller, 1997;
Kiema and Bahr, 2001; Myint, et al., 2002; Myint, 2003a).
This is because urban features are composed of spectrally
different diverse materials (Jensen and Cowen, 1999) concen-
trated in a small area (e.g., plastic, metal, rubber, glass,
cement, and wood). Hence, many objects and land cover
features may need to be considered together and identified as
one land use class (e.g., residential).
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The high-frequency spatial appearance or complex
nature of urban features is a major limitation in accurate
urban land-use and land-cover classification using high-
resolution image data (Myint et al., 2003; Myint, 2003b).
Within-class variance and class boundary pixels are the two
important issues that control the classification accuracy
of images (Metzger and Muller, 1996). Traditional image
processing algorithms (e.g., maximum likelihood classifier)
do not take the local structure or the spatial arrangement of
neighborhood pixels into consideration. This spatial infor-
mation needs to be extracted, in addition to its individual
spectral value, to characterize the heterogeneous nature of
urban features in high-resolution images.

Another critical limitation for conventional supervised
classification is that it is extremely difficult to define suitable
training samples for many categories within urban environ-
ments. This is due to variation in the spectral response of
their component land-cover types (Foster, 1985; Gong and
Howarth, 1990; Barnsley et al., 1991; Myint, et al., 2002).
Thus, the training statistics may exhibit very high standard
deviation (Sadler et al., 1991) and violate one of the basic
assumptions of the widely used maximum-likelihood deci-
sion rule, namely, that the pixel values follow a multivariate
normal distribution (Barnsley et al., 1991; Sadler et al.,
1991). Hence, there is an emerging need for an effective
approach to accurately classify urban land-use and land-
cover features using high-resolution image data.

There have been some attempts to improve the spectral
analysis of remotely sensed data by using texture transforms,
in which some measures of variability in DN values are
estimated within local windows: e.g., contrast between
neighboring pixels (Edwards et al., 1988), standard deviation
(Arai, 1993), local variance (Ferro and Warner, 2002), Getis
statistics (Wulder and Boots, 1998), or gray level co-occurrence
matrix (GLCM) (Haralick et al., 1973; Franklin et al., 2000;
Pesaresi, 2000). De Jong and Burrough (1995) analyzed
variograms of remotely sensed images to quantitatively
describe their spatial patterns. Variogram interpretation of
satellite data was also carried out by Woodcock et al. (1988),
Brown (1998), and Walsh et al. (2004).

Crews-Meyer (2002) used spatially nested pattern
metrics (i.e., double-log fractal, interspersion index, percent-
age landscape area, and mean patch fractal dimension) to
characterize landscape dynamism. Emerson et al. (1999)
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analyzed the fractal dimension and the spatial autocorrela-
tion of satellite imagery (using the isarithm method and
Moran’s I and Geary’s C, respectively) to observe the dif-
fering spatial structures of the smooth and rough surfaces in
remotely sensed images. Lam and Quattrochi (1992) demon-
strated that the fractal dimension of remote sensing data
could yield quantitative insight on the spatial complexity
and information content contained within these data. Bian
and Walsh (1993) and Walsh et al. (1997) used fractal
analysis for assessing the effects of scale on landscape
analysis. Quattrochi et al. (1997) developed a software
package known as the Image Characterization and Modeling
Systems (ICAMS) to examine how fractal dimension is related
to surface texture. They also investigated how spatial res-
olution affects the computed fractal dimension of ideal
fractal sets by using the isarithm, variogram, and triangular
prism methods (Lam and De Cola, 1993; Mark and Aronson,
1984; Clarke, 1986; Lam et al., 2002).

Fractal dimensions may be viewed as a measure of
irregularity or heterogeneity of spatial arrangements and
physical processes in many fields of studies. There has been
growing interest in the application of fractal geometry to
characterize spatial complexity of geographic phenomena
at multiple scales. The study of the relationship between
physical processes and the effects of scale has become
increasingly important in geographic information sciences.
Mandelbrot (1983) defined the term fractal as “a set for
which the Hausdorff Besicovitch dimension strictly exceeds
the topological dimension.” Fractal exemplifies the idea
of self-similarity, in which the spatial behavior of a system,
an object, or a group of features is independent of scale
(Burrough, 1993; Turcotte, 1997). An ideal fractal curve or
surface has a constant dimension value over all scales. The
variability of many natural phenomena is often irregular,
and sometimes it can be approximated by fractional Brownian
motion (Mandelbrot, 1983).

Some researchers suggested that local fractal analysis of
remotely sensed images may reveal information on different
land-use and land-cover categories better than spectral-based
classifier. A potential use of fractal dimension could be
the analysis of texture information in image classification.
Studies of image analysis and texture classification have been
conducted by scholars in different disciplines over the past
several decades with the expectation that different land-use
and land-cover classes could be characterized by the fractal
dimension values (Jaggi et al., 1993; de Jong and Burrough,
1995; Lam et al., 1998; Emerson et al., 1999; Kaplan, 1999;
Qiu et al., 1999). While these analyses demonstrate the
potential of fractal geometry in characterizing texture features
in remotely sensed images, some researchers (e.g., Klinkenberg
and Goodchild, 1992; Burrough, 1993; Roach and Fung, 1994;
De Jong and Burrough, 1995; Dong, 2000) argue that fractal
analyses of constructed sets do not provide a complete
description of natural scaling phenomena, and remotely
sensed images of land-cover units are not true fractals.

Mandelbrot (1995) reported that fractal dimensions may
be far from providing a complete characterization of a set’s
texture. In other words, different fractal sets may share the
same fractal dimension values and have different appear-
ances or textures (Mandelbrot, 1983; Voss, 1986; Dong,
2000), just as different texture appearances of classes may
share the same variance or mean value. As an initial step
toward quantifying the texture or spatial arrangements of
features, Mandelbrot (1983) introduced the term lacunarity
(lacunar is Latin for “gap”) to characterize different texture
appearances, which may have the same fractal dimension
value. Different fractal sets that have the same dimension
value may be constructed, but they look completely different
because they may have different lacunarities.

Lacunarity represents the distribution of gap sizes: low
lacunarity geometric objects are homogeneous because all
gap sizes are the same, whereas high lacunarity objects are
heterogeneous (Dong, 2000). It is understood that objects that
are homogeneous at a small scale can be heterogeneous at a
larger scale. Therefore, lacunarity is a scale-dependent
measure of spatial complexity or texture of a landscape
(Plotnick et al., 1993). Unlike most other landscape indices
and measures (Haines-Young and Chopping, 1996; Gustafson,
1998), the computed values of lacunarity are sensitive not to
map boundaries, but to scale. It measures the deviation of a
geometric structure from translational invariance, or gappi-
ness of a geometric structure (Gefen et al., 1983). In this
study, lacunarity, a new method for texture analysis, which
can be expected to describe the characteristic of fractals of
the same dimension with different texture appearances, was
examined and evaluated in comparison with the fractal
triangular prism, spatial autocorrelation, and traditional
original spectral band approaches.

Data and Study Area
Multispectral Ikonos image data with 4 m spatial resolution
with 4 channels: blue (0.45–0.52 �m), green (0.52–0.60 �m),
red (0.63–0.69 �m), and near infrared (0.76–0.90 �m) was
used for identifying urban land-use and land-cover cate-
gories. The image data was acquired over Norman, Oklahoma
on 20 March 2000. A subset of Ikonos data (1102 pixels by
793 pixels), which contains the central part of the Norman
metropolitan area, is shown in Figure 1. Instead of convert-
ing to 8-bit, the original 16-bit data was used, because we
anticipated that higher radiometric resolution would help
us better identify texture features using lacunarity approaches.
Norman, Oklahoma offers an ideal site to examine the
effectiveness of lacunarity approaches in identifying complex
forms of land use classes. Norman is a small- to medium-
sized city with a population of about 94,000. It represents a
typical American city having common urban/suburban land-
use and land-cover classes such as commercial, industrial,
parks, agriculture, residential, schools, trees, shrubs, grass,
and water categories. One other reason for selecting Norman
as the study area was that the city does not have high-rise
buildings (only 2 or 3 buildings with 10 to 15 stories). We
believe that we may need to consider lidar data for accurate

Figure 1. A subset of Norman, Oklahoma metropolitan
area, displayed using band 3 (0.63 �m to 0.69 �m).
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mapping when dealing with mega cities with many high-rise
buildings.

Examining the relationships between urban land-use,
land-cover classes associated with surface vegetation, water
availability, and associated temperature fluctuation within an
urban area is crucial for city planners and environmental
officers. This information will be useful for developing a
better infrastructure management plan to avoid environmen-
tal degradation: air pollution, noise pollution, traffic conges-
tion, urban heat island effect, chemical contamination, and
soil loss due to improper urban development. We considered
residential areas with different tree crown closure percents as
very important categories for urban planning. Vegetation
influences urban environmental conditions and energy fluxes
(Gallo et al., 1993; Owen et al., 1998). The presence and
abundance of vegetation in urban areas has long been rec-
ognized as a strong influence on energy demand and devel-
opment of the urban heat island (Oke, 1982; Huang et al.,
1987). Urban vegetation abundance may also influence air
quality and human health (Wagrowski and Hites, 1997). They
also provide surface area for sequestration of particulate
matter and ozone. The loss of trees in urban areas intensifies
the urban heat island effect due to the loss of shade and
evaporation and the loss of the principal absorbers of carbon
dioxide and trappers of other pollutants.

Following Lo et al. (1997), seven urban land-use and
land-cover features with different textural appearances were
selected: residential areas with less than 50 percent tree
canopy (Residential-1: R1), residential areas with more than
50 percent tree canopy (Residential-2: R2), commercial (C),
woodland (F), agriculture (A), grassland (G), and water
body (W). Although these land-use land-cover classes may
not cover all classes in all cities, they are important for
environmental planning and hence were selected for this
study. Channels 4 (near infrared), 3 (red), and 2 (green) were
used as the original multispectral bands in this study.

Residential land uses range from high density, defined
as multiple dwelling units per acre, to low density, where
houses are on lots of more than an acre (usually less than
two units per acre), on the periphery of urban expansion. It
should be noted that in our study area, the density of residen-
tial areas in the city is somewhat uniform, since Norman is a
small- to medium-sized city with population less than 94,000.
However, greenness, vegetation biomass content, or crown
closure percent in different residential areas were found to be
different. The residential strips generally have a uniform size
and spacing of structures, linear driveways, linear sidewalks,
trees, grass, shrubs, parking lots, swimming pools, cement
roads, and tar roads. The rest of the classes were adopted
using hybrid levels II and III categories of the USGS land
use/land cover classification scheme (Anderson et al., 1976)
and modified by Florida Bureau of Comprehensive Planning
(1976) (Sabins, 1997).

Methods
Lacunarity Approaches
A number of algorithms for computing lacunarity have been
developed (Lin and Yang, 1986; Voss, 1986; Allain and
Cloitre, 1991; Dong, 2000) after Mandelbrot (1983) introduced
some computations for lacunarity in general form. Allain and
Cloitre (1991) initiated a conceptually straightforward and
computationally simple “gliding box” algorithm for calculating
lacunarity, and reported that lacunarity appears to be a new
tool for identifying the geometry of deterministic and random
sets. Since lacunarity measures the heterogeneity or degree of
complex spatial arrangement, a higher index value of lacunar-
ity indicates a more heterogeneous feature, and vice versa.

Plotnick, et al. (1996) emphasized the concept and utilization
of lacunarity for the characterization of spatial features, which
may not be fractals. The gliding box algorithm has been used
for calculating the lacunarity value of binary images, as well
as gray-scale images. This study evaluates both the binary and
the gray-scale methods for computing lacunarity and their
accuracy in classifying urban features. We reported previously
in Myint and Lam (2004), the development of lacunarity
algorithms and initial exploration of lacunarity approaches.
This study examined lacunarity in comparison with fractal
and spatial autocorrelation approaches. Details of the compu-
tation of the two lacunarity approaches can be found in Myint
and Lam (2004), with a brief overview of the two algorithms
described as follows.

Lacunarity – Binary Approach
The gliding box of a specific size r (length of a square box)
is first placed at the top left corner of an image in which
each and every pixel is filled with either 1 or 0 (Allain and
Cloitre, 1991; Plotnick, et al., 1993). The term gliding box, as
usually referred in the lacunarity literature, is comparable to
moving window in filtering approaches. First, binary images
were generated by converting each gray-scale image (each
band) into four quartile images with value 1’s and 0’s. The
image was basically sliced into five levels in order to get the
four quartile images. The location of each quartile can be
computed using the following formula:

(1)

where n � p � j � g, j � quartile level and is an inte-
ger, g is the decimal portion, n � number of observations,
p � cumulative frequency, e.g., for a data set of 8, to find
Q3, p is 0.75, and g becomes 0 (8 � 0.75 � 6 � 0). Equation 1
is a common formula for finding percentiles and was used in
this study to compute the quartile locations for the image. It
is understood that minor variations of the above formula
have been used, which could yield minor differences in
quartile locations (Journet, 1999).

Then, the box mass “S,” that is the number of occupied
pixels (1’s), is computed. The gliding box is systematically
moved through the binary image one pixel at a time, and the
box mass value is determined for each of the overlapping
boxes. For a given box size r, the probability of box mass S is:

(2)

where n(S, r) is the number of gliding boxes of size r with
mass S, and N (r) is the total number of boxes of size r. The
first and second moment of this distribution, E (S) and E (S2)
are:

(3)

(4)

Lacunarity for gliding box size r, �(r), is defined as:

(5)

Based on a random binary image which has only two
values – 0 for empty and 1 for filled, it can be described as

(6)

Plotnick et al. (1993) extended Equation 5 into

(7)

where E (S) is the mean, and var (S) is the variance of the
number of occupied pixels per box.

�(r) �
var (S)

E2(S)
� 1

E (S2) � var(S) � E2(S).

�(r) �
E (S2)

E2 (S)
 .

E (S2) � a S2P (S, r).

E (S) � a SP (S, r), and

P (S, r) �
n (S, r)
N (r)

e ((x(j ) � x( j�1))/2 if g � 0
x( j�1) if g � 0
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We previously created six hypothetical 15 � 15 binary
image patterns, with white pixels representing 1’s and black
pixels representing 0’s, and demonstrated the measurement
of these patterns using different gliding box sizes: r � 3, 5,
7, 9, and 11 using the binary approach. It was found that
finer scales or smaller gliding box sizes (e.g., 3 � 3) provided
notably different lacunarity values for different patterns. Hence,
it is important to note that lacunarity can be used to measure
different spatial patterns, but as any spatial/textural measures,
lacunarity is highly scale dependent (Myint and Lam, 2004).

Lacunarity – Gray-scale Approach
Lacunarity is not confined to binary configurations, but can
also be used with gray-scale data (Plotnick, et al., 1996).
Remotely sensed image data generally has three-dimensional
structure (i.e., x coordinate, y coordinate, z value). As
discussed earlier, continuous image data can be transformed
into four or more binary images by using the formula and
threshold value to obtain lacunarity values. However, the
binary images derived from one continuous image data are
not true representative sets of the original image texture.
Some valuable information on the spatial arrangements of
objects or heterogeneity of complex texture features may be
lost in the process of converting gray-scale images to binary
images. Therefore, it was anticipated that lacunarity index
value derived from original gray-scale images could provide
better accuracy in texture-based image classification.

Voss (1985) proposed a probability approach to estimate
the fractal dimension and lacunarity of image intensity
surface. The spatial arrangement of the points determines
P(m,L). P(m,L) is the probability that there are m intensity
points within a box size of L centered about an arbitrary
point in an image. Intensity points are referred to as the
number points filled in a cube box. Hence, we have

(8)

where N is the number of possible points in the box of L.
Suppose that the total number of points in the image is M.
If one overlays the image with boxes of side L, then the
number of boxes with m points inside the box is (M/m)
P(m,L). Hence

(9)

(10)

Lacunarity can be computed from the same probability
distribution P(m,L). Hence, lacunarity �(L) is defined as

(11)

A worked example for computing a lacunarity value is
documented in Myint and Lam (2004). In applying lacunarity
analysis, both the gliding box size and the size of moving
window play an important role. Myint and Lam (2004) found
that a cube size of 3 � 3 � 3 was the most accurate, and
hence this box size was used to compute the lacunarity
values in the gray-scale analysis.

Fractal (Triangular Prism Method)
Myint (2003a) examined and evaluated a number of fractal
techniques: the isarithm method (Lam and De Cola, 1993), the
variogram (Mark and Aronson, 1984), and the triangular
prism methods (Clarke, 1986) using a software package
known as the Image Characterization and Modeling Sys-
tem (ICAMS) (Quattrochi et al., 1997; Lam et al., 1998).
The evaluation was based on a discriminant analysis of
texture samples generated from Advanced Thermal Land

�(L) �
M2(L) � (M(L))2

(M(L))2 .

M2(L) � a
N

m�1
m2P(m,L).

M(L) � a
N

m�1
 mP(m,L), and

a
N

m�1
P (m,L) � 1

Application Sensor (ATLAS) image data. The study reported
that the triangular prism was the most accurate method among
all three fractal approaches in discriminating different textures
of land-use and land-cover categories (Myint, 2003a). Hence,
for comparison purposes, the fractal triangular prism approach
to extract texture features of urban categories was employed.

This method calculates the surface areas defined by
triangular prisms. To use the triangular prism method, a
remote sensing image is considered as being located on a grid
of x and y coordinates. At each coordinate pair, the value of
the pixel is interpreted as the z value; Figure 2 illustrates this
arrangement in detail. If an entire image is filled with the
same digital value, the results of the structure will be a cube,
and this would give a fractal dimension of 2.0. If an entire
image is filled with highly uncorrelated values and forms a
complex structure, the fractal dimension would be close to
3.0. The points A, B, C, D in Figure 2 are the coordinates of
the four pixels on a square grid. The height of O is the average
of the elevations from the corner pixels so that: O � (AE
� BF � CG � DH)/4. The vertex of this line is connected to
the vertex of each of the four corners. This will result in a
triangular prism structure. The four prism surfaces that result
are OEF, OFG, OGH, and OHE. The areas of these surfaces can
be computed using trigonometric formulae. The area of the
triangular prism is summed starting from the top left corner of
the image. Hence, the area of surfaces for different step sizes
can be obtained. The logarithm of the total surface area is
plotted against the logarithm of the square of the varying step
sizes. The fractal dimension is computed by performing a
regression on this pair of variables, and D � 2.0 (slope of the
regression line). The dimension value is obtained within a
particular window and assigned to the center pixel as the
window moves throughout the entire image.

Spatial Autocorrelation (Moran’s I )
Moran’s I is one of the two indices of spatial autocorrelation
which could describe the degree to which objects in space
are similar or which could represent the spatial complexity
or the neighborhood arrangements of the surface structures.
Moran’s I is defined as:

(12)I(x) �

na
n

i
a
n

j
wijzizj

Wa
n

i
zi

2

Figure 2. Example of the “Triangular Prism Area Method”
(Clarke, 1986) to estimate fractal dimension value.

04-115.qxd  6/30/05  10:37 AM  Page 930



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2005 931

Figure 4. Mean and standard deviation of the sample
images. A � Agriculture; C � Commercial; F � Woodland;
R1 � Residential-1; W � Water; R2 � Residential-2; .G �
Grassland.

where wij is the weight at distance d so that wij � 1 if point
j is within distance x from point i; otherwise, wij � 0; z’s are
deviations (i.e., zi � yi – ymean for variable y), and W is the
sum of all the weights where i ≠ j. Moran’s I varies from
�1.0 for perfect positive correlation (a clumped or smooth
pattern) to �1.0 for perfect negative correlation (checker-
board pattern).

Analysis
Analysis Using Sample Images
As an initial step towards understanding the effectiveness of
different spatial techniques, linear discriminant analysis was
employed to identify the same seven urban land-use and
land-cover categories: agriculture, commercial, woodland,
residential-1, water, residential-2, and grassland. We gener-
ated ten samples (33 � 33) for each of the above categories
from the Ikonos image data using band 3. Lacunarity, fractal,
spatial autocorrelation, and mean value for each sample
were later computed. The 33 � 33 sample size was selected
due to the nature of the fractal approach. It was discussed
earlier that self-similarity of features, shapes, areas, and
distances need to be observed at different scales (2N ), and a
regression analysis between them needs to be performed to
estimate the fractal dimension value. For example, we can
obtain only a few steps or observations (e.g., 25 � 32) from a
33 � 33 window size to perform a regression analysis for its
fractal estimate.

Sample images of the seven categories are shown in
Figure 3. Mean and standard deviation of the image samples
were plotted to demonstrate the spatial complexity and
nature of the selected classes (Figure 4 and Table 1). It is not
surprising that standard deviations of commercial, residen-
tial-1, and residential-2 class samples are very high com-
pared to other classes. Moreover, standard deviations of
commercial samples are not only very high, but also fluctu-
ate greatly (Figure 4). By observing Figure 4, it can be
expected that high values of standard deviation in residential
and commercial classes will produce errors when using
original spectral bands with conventional spectral-based
classifiers. Water is the most homogeneous of all selected
classes, and standard deviations of agriculture, grassland, and
woodland samples appeared in between the above classes.

For lacunarity calculation, we employed 3 � 3 � 3 cube
sizes since the previous study (Myint and Lam, 2004) found
that this cube size provided the highest accuracy. The
computed values generated by lacunarity, fractal, spatial

autocorrelation, and mean value of the original data were
subject to discriminant analysis. The procedure generates a
discriminat function (or, for more than two groups, a set of
discriminant functions) based on linear combinations of the
predictor variables, which provides the best discrimination
between the groups. Since lacunarity indices were relatively
low, the original values were multiplied by 10 for better
observation and comparison purposes. However, the dis-
criminant power of lacunarity approach will be the same.
Table 1 lists all the indices generated by different approaches
in comparison with the original image sample values. The
power of the above approaches in discriminating samples
of the selected classes are shown in Table 2. The overall
classification accuracy of mean of the original DN values,
fractal, spatial autocorrelation, and lacunarity gray-scale
approach are 40 percent, 41 percent, 46 percent, and 56
percent, respectively, which clearly shows that the lacunar-
ity approach is the most accurate and the mean of the
original DN value approach is the least accurate.

Analysis With Whole Images
The computed values of all approaches (i.e., lacunarity –
gray scale, lacunarity – binary, fractal – triangular prism,
and spatial autocorrelation – Moran’s I) were assigned to the
center pixel of the local moving window (W � W), and the
window moves throughout the whole image. In the previous
study, lacunarity gray-scale method using different moving
windows (i.e., 13 � 13, 21 � 21, 29 � 29) were employed to
observe the nature and effectiveness of moving windows in
characterizing urban texture features. It was reported in an
earlier study that a 29 � 29 window size gave the highest
accuracy (Myint and Lam, 2004). Hence, we used 29 � 29
window size to evaluate the effectiveness of lacunarity in
comparison with fractal, spatial autocorrelation, and original
spectral bands in this study. Similarly, the gliding box of
3 � 3 (for the binary approach) and a 3 � 3 � 3 cube (for
the gray-scale approach) were found to be more accurate
than larger box sizes and cube sizes in discriminating
land-use land-cover features. Hence, a 3 � 3 gliding box size
for the binary approach and a 3 � 3 � 3 cube size for the
gray-scale approach with the use of a 29 � 29 window size
were used to generate texture-transformed images.

We used the combination of multi-spectral bands and
their texture-transformed images derived from all selected
approaches. To better evaluate and for comparison purposes,
the traditional multi-spectral band approach was also

Figure 3. Sample images of seven land-use and land-
cover classes displayed in band 3: (a) agriculture,
(b) commercial, (c) woodland, (d) residential-1, (e) water,
(f) residential-2, and (g) grassland.
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TABLE 1. DESCRIPTIVE STATISTICS (I.E., MINIMUM, MAXIMUM, MEAN, AND STANDARD DEVIATION) OF THE COMPUTED VALUES OF IMAGE SAMPLES USING ALL

SELECTED APPROACHES

A C F R1 W R2 G

Original DN Value Mean 136.32 97.96 121.34 93.05 43.49 93.49 137.65
Std. Dev. 15.75 13.61 13.85 8.56 0.82 11.41 16.76
Minimum 120.16 80.08 98.59 79.28 42.32 82.76 124.02
Maximum 168.87 124.85 138.72 110.58 45.17 119.70 167.02

Fractal Triangular Prism Mean 2.74 2.55 2.80 2.72 2.92 2.66 2.76
Std. Dev. 0.13 0.15 0.06 0.08 0.05 0.05 0.14
Minimum 2.56 2.30 2.73 2.58 2.87 2.61 2.50
Maximum 2.90 2.82 2.90 2.80 3.02 2.79 2.93

Spatial Autocorrelation Mean 0.86 0.85 0.61 0.73 0.39 0.76 0.79
Std. Dev. 0.06 0.06 0.06 0.01 0.10 0.02 0.10
Minimum 0.76 0.74 0.52 0.71 0.24 0.72 0.65
Maximum 0.96 0.95 0.69 0.75 0.54 0.78 0.93

Lacunarity Gray Scale Mean 0.61 1.04 0.87 1.37 0.75 0.62 1.11
Std. Dev. 0.06 0.17 0.11 0.07 0.04 0.04 0.36
Minimum 0.54 0.83 0.71 1.10 0.69 0.56 0.13
Maximum 0.72 1.26 1.04 1.95 0.81 0.67 1.33

A � Agriculture; C � Commercial; F � Woodland; R1 � Residential-1; W � Water; R2 � Residential-2; .G � Grassland.

TABLE 2. THE EFFECTIVENESS OF THE SELECTED SPATIAL APPROACHES IN DISCRIMINATING SAMPLES OF THE SELECTED CLASSES

Selected Approaches (33 � 33 windows)

Mean (DN value) Fractal Spatial AutoC Lacunarity (grey)

Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s 
Class Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

A 10 17 0 0 30 21 60 50
R1 30 33 60 55 60 40 10 33
R2 40 24 40 33 80 73 60 55
W 60 38 20 40 10 25 70 54
G 100 100 100 56 90 90 100 77
F 10 33 70 44 50 63 50 63
C 30 33 0 0 0 0 40 40
Overall Accuracy 40 41 46 56

A � Agriculture; C � Commercial; F � Woodland; R1 � Residential-1; W � Water.

employed. This was just to determine if the traditional
multi-spectral approach could provide a satisfactory accu-
racy for urban classification. We examined different band
combinations in the earlier study (Myint and Lam, 2004)
and found that the combination of all texture transformed
bands and the original bands gave the highest accuracy.
Hence, we used a combination of texture-transformed images
of band 4, band 3, and band 2 derived from each approach
(i.e., lacunarity gray scale, lacunarity binary, fractal triangu-
lar, spatial autocorrelation) and the original bands for
classification using a 29 � 29 local moving window. An
example of texture-transformed images of Ikonos band 3
using the lacunarity gray-scale, the fractal triangular prism,
and spatial autocorrelation approach is shown in Figure 5a,
5b, and 5c.

Approximately 30 � 30 pixels of five training samples
for each land-use and land-cover category were used as
training samples, and 250 random points were used for
classification accuracy assessment. To be consistent with all
approaches in urban image analysis and for comparison of
classification accuracies, we used the same training samples
and employed a maximum likelihood algorithm for all band
combinations. All lacunarity, fractal, and spatial autocorrela-
tion approaches for texture analysis and image classification
were developed using the C�� programming language.

Results and Discussion
It was found that traditional multispectral classification (i.e.,
band 4, band 3, band 2) was inaccurate for urban image
classification from high-resolution data, since it produced 55
percent overall accuracy (Table 3a). This is because spectral-
based classification approaches consider individual pixel
value and ignore spatial arrangements of neighborhood pixels.
For example, roads, houses, grasses, trees, bare soil, shrubs,
swimming pools, driveways, and sidewalks, each of which
may have a completely different spectral response, but may
need to be considered together as a residential class. Hence,
to identify urban land-use and land-cover classes, we need to
consider the spatial arrangements of neighborhood features
and objects or texture and pattern, in addition to considering
individual pixel values (Myint et al., 2002). Although pro-
ducer’s accuracies for grassland and woodland were 100
percent, their user’s accuracies were found to be the lowest
(i.e., 20 percent, 43 percent) among all classes. This means
that the number of correctly classified pixels of grassland and
woodland classes and the total number of reference pixels for
these classes were same. In other words, no pixel from other
classes was mistakenly identified as grassland or woodland.
However, the ratio of the number of correctly classified pixels
of theses classes to the total number of samples being classi-
fied as these classes was high. There were many pixels
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Figure 5. Texture transformed images of Ikonos band 3:
(a) the fractal triangular prism band, (b) spatial autocorre-
lation band, (c) lacunarity gray-scale band.

identified as these classes in the output map that actually
belonged to other classes. The reason was that there were
some signature confusions between a number of classes:

agriculture versus grassland and residential-2 versus wood-
land. This is not a surprising result, as we anticipated and
discussed earlier, the similarity of their spatial appearances.
These findings show the weakness of original spectral band
approach in discriminating different urban land-use and land-
cover classes. The classes that produced a lower level of
user’s and producer’s accuracies were commercial, agricul-
ture, and residential-1 classes.

From Table 3b, we can conclude that the fractal (trian-
gular prism) approach was the least accurate (52 percent
overall accuracy) approach of all. The fractal approach yields
a lower accuracy of the original multi-spectral band approach
(55 percent overall accuracy). By observing the output texture-
transformed image of the fractal approach in Figure 5a, we can
expect that the fractal approach would not provide acceptable
classification accuracy. This may be because the remotely
sensed images of the land-cover units may not be true fractals,
and many natural objects are fractal only in a limited scale
range. Consequently, fractal dimensions obtained for the
samples of the same feature class may vary significantly.
Moreover, completely different texture features may also share
the same fractal dimension value (Myint, 2003a). This is due
to the fact that fractal dimensions may be far from providing a
complete characterization of a set’s texture (Mendelbrot, 1995).

For the original spectral band approach, producer’s
accuracies for grassland and woodland were the highest
(92 percent and 75 percent); however, user’s accuracies for
these classes were found to be the lowest (31 percent and
10 percent). We can say that only 10 percent of the pixels
identified as woodland class and 31 percent of grassland class
were actually identified as such classes. The user’s accuracy
represents the probability that a pixel classified into a given
category actually represents that category on the ground. That
is, even though 92 percent and 75 percent of the grassland
and woodland areas were correctly identified as grassland
and woodland respectively, only 31 percent and 10 percent of
the areas identified as grassland and woodland within the
classification are truly these categories. The situations for
commercial, agriculture, and residential-1 classes were similar
to original spectral band approach. Their producer’s and
user’s accuracies were found to be relatively low.

Spatial autocorrelation (Moran’s I) was found to be more
accurate (78 percent) than the fractal approach (Table 3c).
User’s accuracies for agriculture and grassland were 54 percent
and 73 percent, whereas producer’s accuracies were 100 per-
cent and 27 percent, respectively. Apparently, there is some
serious signature confusion between these classes with the
spatial autocorrelation approach. It was found that 20 sample
points from the agriculture class in the output map actually
belonged to the grassland category, and only eight points were
accurately identified as such. We can say that the identification
of other classes with this approach was reasonably accurate.
However, spatial autocorrelation is not powerful enough in
distinguishing grassland from agriculture since they both are
homogeneous features. We can interpret that spatial autocorre-
lation approach may be effective in discriminating smooth
and coarse surfaces but may not be sensitive to the degree of
smoothness or the degree of coarseness. Lee and Wong (2000)
and Getis and Ord (1992) reported that spatial autocorrelation
is incapable of differentiating hot spots and cold spots.

From Table 3d, the second highest classification accu-
racy was produced by the lacunarity-binary approach with
an overall accuracy of 81 percent, which is below the
minimum mapping accuracy of the 85 percent required for
most resource management applications (Townshend, 1981).
This may be due to the fact that much texture information
might have been lost when converting from the original
image to four binary images. The most confusing classes for
the binary approach are again agriculture and grassland. It
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TABLE 3. CLASSIFICATION ACCURACY OF ALL APPROACHES: ORIGINAL SPECTRAL BAND APPROACH, FRACTAL APPROACH (ORIGINAL AND FRACTAL TRANSFORMED

BANDS), SPATIAL AUTOCORRELATION APPROACH (ORIGINAL AND SPATIAL AUTOCORRELATION TRANSFORMED BANDS), LACUNARITY BINARY APPROACH (ORIGINAL

AND LACUNARITY BINARY TRANSFORMED BANDS), AND LACUNARITY GRAY-SCALE APPROACH (ORIGINAL AND LACUNARITY GRAY-SCALE TRANSFORMED BANDS)

Selected Approaches

Original Bands Fractal Spatial Autoc Lacu (binary) Lacu (grey)

Class Pro Acc Usr Acc Kap Pro Acc Usr Acc Kap Pro Acc Usr Acc Kap Pro Acc Usr Acc Kap Pro Acc Usr Acc Kap

A 48 53 0.44 47 50 0.40 54 100 1.00 63 100 1.00 77 100 1.00
R1 43 57 0.46 34 77 0.65 71 90 0.88 73 73 0.69 89 89 0.85
R2 37 83 0.75 45 73 0.65 93 87 0.85 78 97 0.96 94 94 0.92
W 100 85 0.84 100 100 1.00 100 100 1.00 100 100 1.00 100 100 1.00
G 100 20 0.18 92 31 0.27 73 27 0.22 100 43 0.39 95 75 0.72
F 100 43 0.39 75 10 0.08 100 67 0.63 100 83 0.81 94 100 1.00
C 70 53 0.47 70 47 0.41 93 83 0.81 85 77 0.73 98 95 0.94
Ovr Kap 0.47 0.43 0.74 0.78 0.90
Ovr Acc 55 52 78 81 92

A � Agriculture; R1 � Residential-1; R2 � Residential-2; W � Water; G � grassland; F � Woodland; C � Commercial; Pro Acc � Producer’s
Accuracy; Usr Acc � User’s Accuracy; Ovr Acc � Overall Accuracy; Kap � Kappa statistics; Autoc � Autocorrelation; Lacu � Lacunarity.

was found that 13 sample points identified as grassland
actually belonged to agriculture, and only 13 points were
correctly identified as such. Other signature confusions
found were that six sample points from commercial areas
actually belonged to residential-1 and four sample points
from residential-1 actually belonged to residential-2. This is
simply because these categories are the most heterogeneous
among all classes that generally possess high variance values.

Table 3e shows that combination of the original spectral
bands and the texture transformed of lacunarity gray scale
approach was the best approach, since it achieved the
highest accuracy (92 percent). Classes with some signature
confusion were residential-1 versus residential-2 and
agriculture versus grassland. It was found that three sample
points identified as grassland actually belonged to agricul-
ture, two sample points identified as residential-1 actually
belonged to residential-2, and three samples identified as
grassland actually belonged to residential-1.

In examining the accuracy of all approaches, it can be
observed that there was always some signature confusion
between agriculture and grassland, because they are both
spectrally and spatially similar to each other. In general,
they were the two major categories that made the classifica-
tion accuracy lower. Moreover, there is also some major
confusion between residential-1 and residential-2, since they
both are similar. The other class that had some confusion
with others in almost all approaches was commercial class,
which has high variance values as residential classes (Fig-
ure 4). The only highly reliable category found was water in
this study. It reaches the highest user’s and producer’s
accuracy (100 percent) for almost all approaches.

The output maps from the traditional multispectral
approach, fractal, spatial autocorrelation, and lacunarity gray
scale approaches are shown in Figure 6, 7, 8, and 9, respec-
tively. As mentioned earlier, we used the same training
samples, the same number of random points for accuracy
assessment, and the same classification algorithm for all
approaches. We also applied the same color scheme to each
category in the output maps: yellow for agriculture, cyan for
commercial, green for woodland, black for water, purple for
residential-1, and red for residential-2.

Conclusions
The overall accuracies in this study for fractal, conventional
spectral approach, spatial autocorrelation, lacunarity binary,

Figure 6. Classified map using the original spectral
band approach.

Figure 7. Classified map using the fractal approach.

and lacunarity gray-scale approach were 52 percent, 55
percent, 78 percent, 81 percent, and 92 percent, respectively.
The results from the classification of actual image data are
consistent with the results from the preliminary study of
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Figure 9. Classified map using the lacunarity gray-scale
approach.

sample images using discriminant analysis (Table 2). It has
been confirmed by the results obtained in this study that
traditional spectral based classification approach is inaccu-
rate in classifying urban land categories from high-resolution
image data. Combining the original multi-spectral bands
and texture transformed images derived from the fractal
approach gave lower accuracy than spectral bands alone.
Hence, it can be concluded that the fractal approach is not
efficient in land cover classification in high-resolution
remotely sensed images. The spatial autocorrelation approach
yielded higher accuracy than the fractal approach in urban
feature classification.

Lacunarity was found to be the most accurate, and the
addition of a lacunarity-transformed image improves the
classification accuracy dramatically. Future study should
focus on experimenting with different window sizes and
gliding box sizes for higher detailed land use land cover
classification. Other lacunarity approaches which may better
describe the spatial arrangements of urban land-use and
land-cover classes could also be explored for future research.
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