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Pz ol Kaloromeon, Michignn, we o that e retrieval suceess mate depenids an
Uhe spotinl apd spestinl chamcteristios of the feature of interest and the confipuration

of oo vsed d dhefie the feature.

INTRODUCTION

Satellite and wircrall-borme remuole sensors have gathered huge volumes of datn
over the past 30 years, Presently. earth resources sensors are penerating tembyies of
image data every day, As the geagraphical and temporal coverage, the spectral and
gpatial resolution, and the number of individua] sensors increase, the sheer vilurme
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and complexity of available data sets will complicate management and use of the
rapidly growing archive of earth imagery. This problem is a subset of the much larger
challenge of organizing and indexing all types of digital data. The vast amount of
information on the World Wide Web would be of little use without a means to locate
information on topics selected by a user. Search engines that rely on keyword matches
between the query and Web page titles or other indexed data are essential for success-
ful use of this resource. However, indexing multimedia data, such as imagery, videos,
and audio files have proven to be problematic (Paquet, et al., 2000).

The many existing and potential uses for remotely sensed imagery make access-
ing images suited to a particular user’s needs extremely complex and difficult. A
single scene often covers a large part of the Earth’s surface, so it may also take a
lengthy manual search to find other occurrences of a feature of interest in a particular
image. Even seemingly simple searches for images depicting a particular location
involve time-consuming analyses of the many individual scenes that have been gath-
ered over the past 30 or more years, each having different sensor platforms, levels of
quality (due to cloud cover, illumination, etc.), dates, and pre-processing.

Metadata schemes such as the Earth Observing System Data and Information
System (EOSDIS) Core Metadata Model (http://ecsinfo.gsfc.nasa.gov) address this to
some extent by specifying location, lineage (including image processing and projec-
tion information), sensor type, and other identifying characteristics to aid searches for
images of specific areas at specific times. Ohm et al., (2000) characterize these as
“high-level descriptors,” which are generated when raw imagery is prepared for
release. Mid-level descriptors include rule-based semantic identification of features
within a scene such as lakes, mountains, and vegetated areas. By their nature, the
mid-level descriptors are often user-specific, and it would not be practical to add all
of this information as formal metadata, since a typical satellite image contains a large
number of identifiable features, and it is impossible to anticipate all uses to which an
image may be applied. However, low-level descriptors (image characteristics such as
shape, color, pattern, and texture) can provide useful metadata on an image’s content
if it is indexed and organized for efficient retrieval.

Content-based image retrieval is the process of selecting images from an archive
based on semantic and visual contents. This necessarily involves high- to low-level
characteristics of the image itself (Smeulders et al., 2000). Most of the applications
reported in the pattern recognition literature (Datcu, et al, 2003; Yao and Chen, 2003;
Li and Narayanan, 2004), generally use some type of supervised or unsupervised
image classification technique to assist image retrieval, although Manjunath and Ma
(1996) demonstrate a purely texture-based approach. Image classification generally
requires some sort of human intervention, such as the selection of training sites for
supervised techniques or the linking of cluster signatures to land cover classes in the
case of unsupervised classification. However, the approach presented here is more
automated, requiring human intervention only in the feature identification stage.

Because a digital image is a raster characterization of a continuous surface of
reflected or emitted light energy, large discrete objects such as buildings or water
bodies are simply groups of homogeneous pixels set against a background of hetero-
geneous pixels that may represent mixtures of small features or land covers that form
a complex mosaic of different materials. Traditional unsupervised and supervised
image classification procedures consider only spectral characteristics on a pixel-
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by-pixel basis, and therefore do not consider spatial characteristics of the features
depicted in an image. Texture indices usually involve the use of a moving window or
co-occurrence matrix of a defined dimension, and thus they explicitly measure spatial
relationships. Object-oriented image classification procedures (Baatz and Schape,
2000; Blaschke, et al., 2000) consider both spectral and spatial characteristics. How-
ever, the segmentation of an image into homogeneous groups of pixels (or “objects”)
involves the specification of shape and scale parameters that limit the utility of this
technique in a metadata context, because the varying size and shape of potential fea-
tures of interest determine the degree of segmentation and customized hierarchical
classification that needs to be performed for a given query. The approach presented
here relies on a regular spatial decomposition of an image, thus requiring the user to
approximate the characteristic texture, tone, shape, and size of a feature of interest
within the hierarchy of this regular decomposition. This feature approximation allows
the development of a smaller searchable metadata table that can be accessed more
quickly than a list of object characteristics.

Because most current earth-imaging satellites (Landsat 7, SPOT, Ikonos, Quick-
bird, IRS) include a higher resolution panchromatic image along with lower resolu-
tion multispectral images, this pilot-scale study uses the spatial characteristics and
grayscale statistics derived from panchromatic images as indices of image content.
More powerful and successful image retrieval would inevitably result from the inclu-
sion of color criteria, as measured by the spectral and spatial characteristics of indi-
vidual spectral bands (at the cost of increased image index database size). This
capability is planned for future versions of the software application.

METHODOLOGY
Software

The Image Characterization and Modeling System (ICAMS) (Quattrochi, et al.,
1997; Lam et al., 2002) was developed primarily as a test-bed for evaluating the
performance of various spatial analytical methods on remotely sensed images and as
such, it is intended to work with other commercially available image analysis and GIS
software packages. ICAMS includes utilities for contrast stretching, edge detection,
wavelet decomposition, and Fourier transforms. It also computes fractal dimension
using the box counting, triangular prism, and isarithm methods (Jaggi, et al, 1993),
and it measures lacunarity, a scale-dependent measure of the gaps in an imaged pat-
tern (Dong, 2000). The application also includes utilities for measuring Moran’s I and
Geary’s C indices of spatial autocorrelation (Cliff and Ord, 1973). In addition to these
global (whole image or user-defined region of interest) measures, ICAMS includes
local measures of triangular prism fractal dimension (Clarke, 1986), Moran’s I,
Geary’s C, and Getis’ G and G* indices of spatial autocorrelation (Getis and Ord,
1992). These local measures compute the values of these indices in a moving window,
thus producing an output image that shows the differences in spatial complexity
across a scene. The ICAMS content based image retrieval utility is the subject of this
paper and is explained in the section entitled “Similarity Search.”
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Fig. 1. Triangular prism.

Analytical Methods

Fractal Dimension. Fractal analysis (Mandelbrot, 1983) provides tools for mea-
suring the geometric complexity of imaged features. Fractal dimension (N isa
non-integer value that, in Mandelbrot’s (1983) definition for [ractals, exceeds the
Euclidean topological dimension as the form of a point pattern, a line, or an area fea-
ture grows more geometrically complex. The triangular prism method {Clarke, 1986}
of estimating the fractal dimension constructs triangles by averaging the z-values
{which in this case are the digital numbers) for sets of four adjacent pixels (Fig. 1)
The z-values for cach pixel are used to establish heights at each comer, and triangles
are formed by connecting these corner values to the mean value of the four pixels al
the center of the array. The arcas of the triangular “faccis” of the prisms are then
summed to represent the total step | surface area, The algorithm then steps to 3 % 3
arrays of pixels, with the center height corresponding to the average of the four cor-
ners. The algorithm continues Lo increase the pixel size and compute the triangular
prism areas until the entire surface is calenlated as a single composite array. The loga-
rithm of the total of all the prism lucet areas at each step is plotted against the
logarithm of the pixel dimension at cach step. The fractal dimension is calculated by
performing a least squares regression on the surface areas and pixel sizes. The regres-
sion slope B is used to determine the fractal dimension 72, where:

D=2-5 (1)

In the box counting fracral dimension measurement method | Liebovitch and
Toth, 1989; Sarkar and Chaudhuri, 1992), the image is considered to be a
three-dimensional space, with x and y being the column and row of the pixels, and the
z-value corresponding to the 8-bit grayscale value of the pixel. 1T we stack a series of
three-dimensional boxes of pixel dimension r, so that the maximum z-values are coy-
ered hy the boxes at each x,p location, we can then determine the number of boxes
needed to span the grayscale values from the minimum to the maximum values (Fig,



156 EMERSOMN ET AL,

Fig, 1, Box Counting method of measuring ltuctal dimension,

21. The total count of boxes needed (o span all of the grayscale values throughoul the
image (V) is summed in Equation 2 as:

e Z:Jr{f,j] (2)

[

where n, 15 the number of boxes needed Lo span the grayscale values at row, column
lecation (7, /). We compule o, the capacity, using a range of values of # and Equalion 3:

lag{ N
d = ﬂ‘{"—'] (3}
log(1/r)

The fractal dimension is computed using Equation | and the slope of the least
squares line B that best [ils the computed values of o for a range of box siecs.

Lacunarity. Lacunarily is a scale-dependent measure that is related to fractal
dimension, but instead focuses on the distribution of gaps in g pattern. Low-lacunarity
geometric features are homogencous, with similar gaps ocurring at regular intervals
if they oceur at all. High-lacunarity features have an irregular arrangement of gaps.
Since homogeneous patterns can appear heterogencous over large spatial extents,
lacunarity is scale-dependent. The method for measuring lacunarity in ICAMS-Java is
derived from Lhe gliding box algorithm proposed by Allain and Cloitre (1991), and
developed by Plotnick et al. (1996). Dong { 2000) extended the gliding box techmque
to grayscale images,

The gliding box methiod is similar to the box counting method described above,
except in the case of lacunarity, Q(M.r), the probability function for the number of
buoxes ol size + (called the mass, M) is ealeulated and used in Equation 4 to estimate
the lacunarity A:
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Spatial Autocorrelation. ICAMS also contains modules for analyzing the
spatial autocorrelation of images, which reflects the differing spatial structures of
the smooth and rough surfaces. Moran’s / (Cliff and Ord, 1973) is currently the only
spatial autocorrelation index used in the content based image retrieval utility and is
calculated using Equation 5:

n n
nZZwiJzizj
1= A
n
(n— 1)Zwij
J

(&)

where w; is a binary connectivity measure (w;; = 1 if pixel j adjoins pixel i, otherwise
wy; = 0), user selectable at either rook’s case (four pixel neighbors), or queen’s case
(eight neighbors). The z-values are standardized grayscale deviations (i.e., z; = x; —
Xmean TOT variable x). Moran’s  varies from +1.0 for perfect positive correlation (a
clumped pattern) to —1.0 for perfect negative correlation (a checkerboard pattern).

Wavelet Energy Signatures. [CAMS includes a utility for multi-resolution
decomposition of an image using wavelets, or small oscillatory components that oper-
ate locally. The general form of a continuous wavelet transform of one-dimensional
data WW,can be expressed as (Daubechies, 1991):

ety = [ fonv(=)ae = (g o0 (6)
where

v () = lalPy(22) )

a

and where a and b are the scale and translation parameters, respectively; and W(x) is a
window function, referred to as the mother wavelet. The mother wavelet is a proto-
type to generate wavelets with variable parameters « and b to scale and shift the
mother wavelet so that the original variation in grayscale values is approximated. The
scale index a indicates the wavelet’s width, and the location index b gives its position.

The wavelet transform starts with the choice of a fixed mother wavelet. There are
many types of wavelets, ranging from the simple Haar wavelet to more complex
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forms. ICAMS presently uses a relatively simple Daubechies DB4 wavelet
(Daubechies, 1988). The continuous wavelet transform is computed by changing the
scale of the wavelet, shifting the wavelet in space, multiplying by the signal, and inte-
grating over all locations. The resuits of the wavelet transform are wavelet coeffi-
cients, which measure the variation of the signal in a neighborhood b whose size is
proportional to a. In other words, this definition of the continuous wavelet transform
shows that the wavelet coefficient is a measure of similarity between the wavelets and
the frequency content of the image. The calculated continuous wavelet transform
coeflicients refer to the closeness of the image to the wavelet at the current scale.
Mallat (1989) proposed a framework for the multi-resolution decomposition of
the discrete wavelet transform. Multi-resolution decomposition is normally accom-
plished by digital filtering techniques in a dyadic fashion, and the scale a is given by a =

27, where j=1,2,3 ... etc., and integer j is a decomposition level. It decomposes an
image into a coarser resolution representation that consists of the low-frequency
approximation information and the high-frequency detail information. Let 4, be the
image, and H and L be one-dimensional high-pass and one-dimensional low-pass
filters, respectively. They are the conjugate mirror filters associated with the wavelet.
With the separability of the wavelet basis and the convolution formula, we can obtain:

DYy =4;*LH (®)

D% =A4;* HL
D =A% LL,

where 4; is an approximate image of the image 4 at a spatial resolution j. 4;is
decomposed to an approximate image A;4 and three detail images D! D Dzjﬂ, and
D3 j+1> and in three orientations (horizontal, vertical, and diagonal) at a lower spatial
resolution j+1.

The approximate and detail coefficients can be calculated with a pyramid algo-
rithm based on convolutions with the two one-dimensional filters H and L. The result
in the output of the low-pass filter L represents the data’s low-frequency approxima-
tion. The outputs of the high-pass filter H are referred to as the data’s high-frequency
detail information. The pyramid decomposition can be continuously applied to the
approximation image until the desired coarser resolution 27 (j > 0, the maximum
decomposition level) is reached.

Grayscale Statistics. A five-bin histogram of the grayscale values contained in
each quad is stored in five fields in the index database. In order to facilitate compari-
sons between different levels of the quadtree structure with the different numbers
of pixels in each level’s quads, the histogram was normalized by converting each
frequency bin to a percentage of total pixels in the quad. The five-bin histogram then
was considered as a group of values in the ranking of results. The mean and standard
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Fig. 3. Content-based image retrieval process.

deviation of the grayscale values for each quad were also computed and stored in the
metadata table.

Similarity Search

ICAMS includes a similarity search capability in which the user defines a feature
of interest, the application computes the spatial and spectral characteristics of this
feature, and then searches a metadata table for similar characteristics that indicate the
presence of matching features. Figure 3 shows the procedure used in this example.
First, a separate application creates the metadata table of spatial and grayscale statis-
tics of 512 x 512 pixel tiles derived from a larger image scene. Fractal dimension
computed by the box counting and triangular prism methods, Moran’s /, lacunarity,
Daubechies’ DB4 wavelet energy, and mean, standard deviation, and a normalized
five-bin histogram of the grayscale values of each of these 512 x 512 pixel tiles are
analyzed in a recursive region quadtree structure (Samet, 1984). The results from pro-
gressively smaller square quadtree regions (quads) are stored in a relational database
of tile indices. Each 512 x 512 pixel tile in the image index database has one record
with the spatial and grayscale statistics for the whole tile, four records representing
the first level of quadtree decomposition, 16 records for the second level, 64 records
for the third level, 256 records for the fourth level, and 1096 records for the fifth
level. Five levels were chosen as the highest level of decomposition, because the
resulting quads have a dimension of 16 x 16 pixels, and this was thought to be the
minimum support necessary for the fractal dimension calculations.
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Fig. 4. Region quadtree map and tree structure for nser-defined feature.

Fig. 5. Region quadtree feature selection in ICAMS,

Figure 4 shows how quads that correspond to a feature outline are indexed within
the region quadtree structure. The user clicks the left mouse button on the tile to break
it down into progressively smaller segments. I the user’s concept of a feature of inter-
st involves a characteristic size and shape, then the outline of the (Lature is approxi-
mated by selecting the appropriate quads. Figure 5 shows an example leature ol
interest that has been defined in this fashion, with the quads corresponding to the fea-
ture selected by a right-click (indicaled by thicker lines). The feature definition is
constructed by computing the selected spatial or gray stalistics [or the ensemble of
quads that define the feature, and this set of indices is used to find matching fealurcs.

[n static feature marching, the simplest form of image retrieval, the Lile index
database is queried for the same quads in the same orientation and location as the
user-defined definition of the feature of interest. Corresponding quads in each of the
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Fig. 6. Translation of user-defined feature.

B

Fig. 7. Rotation of user-defined feature.

database tiles are compared to the feature definition, and the results are ranked using a
least-squares difference calculation. Future versions of ICAMS will include other dis-
tance measures such as Mahalanobis distance, if they can be shown to improve
retrieval performance. Static feature matching is only appropriate for databases of
images such as portraits that have similar feature sizes and orientations.

In the context of satellite remote sensing, content-based image retrieval poses
challenges, such as translation of the x,y location of matching features in other
images, rotation of the feature, scaling up or down in size, isolation of the feature
from other patterns and textures, and 3-D orientation of the feature with respect to the
observer (termed “object pose” in the pattern recognition literature). The region
quadtree structure was used in this application because it allows at least a partial abil-
ity to minimize some of these problems. In the current implementation of [CAMS,
translation is taken into account by moving the user-defined set of quads around the
entire range of possible locations of the largest quad in the feature definition (Fig. 6).
As compared to static searches, translation increases the search time, especially if the
feature definition does not include any large quads. 90 degree rotations and reflec-
tions can be calculated within the quadtree feature definition by simply changing the
numbering of the nodes, although other types of rotations pose a difficult challenge
(Fig. 7).

Scaling at integer multiples defined by the quadtree structure can be incremen-
tally performed by jumping up or down within the quadtree (Fig. 8). However,
lacunarity, fractal dimension calculations, and other spatial indices may change with
the size of the support, or number of pixels used in the calculation. For vertical aerial
and satellite imagery, the object pose problem is generally not severe, although
adjustments have to be considered for oblique images and features significantly
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A. 6-level
H quadtree

B. 5-level
—| quadtree

Fig. 8. Scaling up user-defined feature according to quadtree hierarchy.

off-nadir. Rotation and scaling have not yet been incorporated into the ICAMS con-
tent-based image retrieval utility.

RESULTS
Landsat 7 Image

A Landsat 7 ETM+ panchromatic image obtained on October 24, 2000 was sub-
setted into 506 512 x 512 pixel tiles to form an example tile database. The Landsat
scene (Path 19, Row 36) includes the northern half of the Atlanta, Georgia metropoli-
tan area, plus the southern end of the Appalachian Mountains in northern Georgia,
Alabama, North Carolina, and Tennessee (Fig. 9). The scene includes a range of land
covers, including extensive areas of forested mountains and the northern suburbs of
Atlanta, some large lakes, and smaller areas of pasture lands.

In this example, two different features were identified: (1) a collection of quads
that define a lake shore or river bank with a land/water contrast, and (2) an extensive
residential area. A quantitative determination of the success or failure of a con-
tent-based image retrieval process necessarily involves a degree of subjectivity, since
success equates to returning a tile that contains one or more features that match the
semantic definition (as in land/water contrast) that the analyst had in mind when they
were defining the feature. In this case, the database of 506 subsetted tiles was visually
inspected for land/water contrast areas, and it was found that 62 of the 506 tiles con-
tained one or more matching features.

Figure 10 shows the original query tile of an area with a characteristic land/water
contrast and the feature definition for a five-bin grayscale histogram analysis. The
tiles with the top five closest matches to the query tile are contained in Figures 10B—
10F. The five-bin histogram returned matches in all five of the top ranked land/water
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Table 1. Comparison of Indices for the
Top Five Ranked Land/Water Conlrasls

Index Matches
Rox counting 1/5
Triangular prism 1/5
Lacunarity 1i5
Maoran's { 1/5
Mean 21
Std. deviation 2{5
5-bin histogram 33

contrast Liles. Tahle | shows that for this type of feature, the five-bin histogram out-
performed the other indexes at image retrieval. A Mann-Whitney test was performed
on the ranks of all remaining 505 tiles in the database. Matches rom the visual
inspection of the database were coded as a binary grouping variable (0 — no land/
water, | — land/'water interface). Tables 2 and 3 show that the results of this analysis
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Fig. 10. Lake shore search using five-hin histogram with translation.

Table 2. Ranks of Five-Bin Hislogram Analysis of Land/Water Contrast

Ciroup N Mean ranl S ol ranks
Mo lamd‘waler 444 27339 121,385, (W)
| andwater a1 104,59 (1, 380,00
Total 5

Table 3. Mann-Whitney Test Statistics of Land/Water Analysis

Slatistic flue
Mann-Whiiney U EERRVRTE
Wilcoxon W HIH0 K]
Z 8471

Asymip. sig. (2-railed) 0,000
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Table 4. Comparison of Indices for the
Top Five RankedResidential Areas

Index Matches
Box counting 3/5
Triangular Prism 2/5
Lacunarity 4/5
Moran’s 1 0/5
Mean 0/5
Std. deviation 0/5
Five-bin histogram 2/5

yield Mann-Whitney U, Wilcoxon W, and z-score statistics that show the overall
rankings from the five-bin histogram were not likely to resemble those derived from a
chance arrangement.

Images of urban areas are often more complex than natural landscape images,
with a number of land covers closely interspersed. Residential areas are particularly
difficult to pick out from other land covers, because lawns and street trees resemble
grasslands and forests, and the built up areas are often difficult to distinguish from
more intensive commercial land uses. Although small residential areas are dispersed
throughout the Landsat scene, extensive areas corresponding to quads of 128 x 128
pixels (approximately 370 hectares) are concentrated in the Atlanta metropolitan area.
From visual inspection, 69 of the 506 tiles had extensive residential areas. The hetero-
geneity of urban land covers makes summary statistics of grayscale values of rela-
tively little use, since a diverse range of land cover types may have similar grayscale
distributions. Table 4 shows that lacunarity yielded the highest number of residential
matches in the top five ranked tiles, followed by box counting and triangular prism
fractal dimension. Figure 11 shows that four of the top five tiles in the lacunarity anal-
ysis matched extensive residential areas. The mismatch occurred in a mountainous
area with small water bodies, cleared areas, shadows, and other features that form a
complex land cover that has a texture similar to an urban area. The retrieval efficacies
of lacunarity and box counting fractal dimension were also compared using the
Mann-Whitney test. Tables 5 and 6 show that both methods were significantly differ-
ent from random rankings, with the box counting fractal dimension having a slightly
lower mean rank of residential area matches.

IKONOS Image

An IKONOS panchromatic image obtained on October 24, 2002 was subsetted
into 380 512 x 512 pixel tiles to form an example tile database. The image covers the
western portion of Kalamazoo, Michigan, including the Western Michigan University
campus. The scene includes a range of land covers such as residential and commercial
areas, golf courses, forested wetlands, and small lakes. Analysis proceeded as before
with the translation capability enabled.
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0. Rank 3 (hit} E. Rank 4 (hit) F. Rank 5 {nit)

Fig. 11. Residential area search nsing lacunarity.

Table 5, Ranks of Box Counting Fractal Dimension and Lacunarity
Analysis of Residential Areas

Methad Grouping N hean rank Sum ol ranks

Lacunarity No residential 438 278,10 121,307.00
Residential 67 HE.03 5.958.00
Total Nz

Box coumting Mo residential 438 278.26 121,875,099
Residential 67 785 5 EEE.00
Total 3035

Nine of the 380 tiles contained all or part o & goli course. Figure 12 shows the
selected quads that form the feature definition and the top five tiles retrieved from the
database. As compared o the rest of the image, the most distinguishable property of
the golf course area is the lighter tone of the grass and sand traps as compared 1o the
surrounding trees and urban land covers. It is therefore not surprising that the indices
that achieved the best resulls were the five-bin histogram and the meansstandard devi-
ation of the grayscale values. Table 7 summarizes the results of the golf course image
retrieval process.
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Table 6. Mann-Whitney Test Statistics of Residential Area Analysis

Stanistic Lacunarity Box counting
Mann-Whitney L 368000 36408040
Wilcoxon W 595800 886,00

I QEEZ 94947
Asymp, sig. (X-tailed) 00000 L0040

D. Rank 3 {hit} E. Rank 4 (hit) F. Rank 5 (miss)

Fig. 12, Ranked results from five-bin histogram analysis ol a goll course,

In the IKONOS source image, trailer parks were a unique, casily identifiable land
cover, characterized by closely interspersed rectangular structures, usually located at
an angle. Ten of the 380 tiles contained a trailer park, Possibly due to the oblique ori-
entation of most of the trailer parks in the IKONOS image, the diagonal high-pass
wavelel energy signatures yvielded the hest results, followed by box counting fractal
dimension, Other measures such as loangular prism fraclal dimension and Moran's
yielded poor results and are not summarized. Figure 13A shows the feature definition,
with the top five ranked tiles (Figures 13B 13F) that were obtained wsing the
high-pass wavelet energy signatures. Although it was possible to retrieve all 10 of the
Liles in the database that depicted large trailer parks, other urban features, such as the
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Table 7. Results ol Goll Course Tmage Retricval

Ciravscale Cirayscale  Practal dim, Fractal dim.  Spatial autoe. Wavelet
5-hin Mist.  Mean/St Dev Box counting  Tri. Prism Moran's 7 High pass coergy
Image Rank Imapge Rank Image Rank Image Rank Image Rank Image Rank

295 1 et 1 147 5 128 4 3l I 3l 1
296 ik 295 2 295 7 147 1] 275 2 295 2
il 3 127 3 108 9 275 14 128 4 128 4
&1 4 200 1] 3l 1 1 22 2935 i 296 7
124 3] 275 11 124 14 127 25 206 7 108 1
10 i 10H 12 275 15 196 o9 127 b 127 14
127 14 3l 14 206 62 295 77 108 10 3l 13
275 24 51 17 127 0 108 110 147 3l 275 28
147 K] 147 i3 Al 30 51 201 ] 122 147 47

Mean 11.11 11.29 28.00 38.67 21.22 14.22

D. Rank 3 (hit) E. Rank 4 (miss) F. Rank 5 (miss)

Fig. 13. Ranked results from wavelet analysis of a trailer park,

college campus tile (Fig. 13E) and rough textures such as the sun glint on the lake
{Figure 13F), interfered with the positive resulis, Table 8 shows the results of the
trailer park image retrieval process.
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Table 8. Results of Trailer Park Image Retrieval

Grayscale Fractal dim. Wavelet
5-bin. Hist Box counting Lacunarity High-pass energy
Image Rank Image Rank Image Rank Image Rank

14 1 365 4 364 1 183
183 3 183 5 365 9 167 8

36 10 211 11 212 10 14 9
211 13 184 17 184 31 36 11
265 19 36 18 167 33 211 13
229 23 265 22 211 56 365 16
184 39 14 27 203 77 184 18
365 75 167 30 36 97 210 24
167 78 210 42 210 110 212 43
210 111 366 62 366 123 229 75

Mean 372 23.8 54.7 21.8
CONCLUSIONS

The quadtree structure provides an efficient means of indexing and searching a
database of low-level image characteristics. Some of the indices that have been exam-
ined in this work, most particularly fractal dimension and lacunarity, are greatly
affected by the statistical support (size) of the selected quads, and although this
encourages the use of larger quads with more stable indices, it simultaneously leads to
a more approximate definition of the complex shape of a defined feature. Selecting
only smaller quads to define a feature greatly increases search times (particularly if
the translation capability is enabled), because a much larger number of records in the
index database must be examined.

We have found that the hierarchical quadtree structure provides a good basis for a
user to isolate the feature of interest from the background if the user selects homo-
geneous regions that characterize the feature itself. However, it is often useful to
select surrounding regions that are not part of the defined feature, if the figure/ground
contrast is important to determining the success or failure of a match. Size and shape
characteristics may or may not be important to a feature definition, and the degree of
success at retrieving matching features depends in part on the user’s skill at identify-
ing the salient characteristics of the feature of interest.

Although the basic framework for performing content-based image retrieval is
presently encoded into ICAMS-Java, there still remains much to accomplish before
the tool can be considered completely successful. Only single-band images can be
analyzed at this point, and this limits the accuracy of the retrieval. Adding multispec-
tral capability should significantly improve performance, because many of the key
identifying characteristics of features are related to color (Yao and Chen, 2003), as
represented by the information contained in multispectral bands.
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The region quadtree approach provides a framework for evaluating the perfor-
mance of potentially any combination of textural or spectral measures for content-
based image retrieval. Pre-processing a large image scene or a collection of scenes
and storing the spatial and spectral indices in a database can potentially extend the
definition of metadata beyond the usual descriptions of acquisition date, sensor iden-
tification, and lineage to a richer content-based description that can facilitate access to
imagery that depicts specific features and conditions on the Earth’s surface that may
be of interest to researchers engaged in earth science, resource development, plan-
ning, and security investigations.
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