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ABSTRACT 

Achieving coastal sustainability in low-lying coastal areas is a great challenge. This 

study developed a spatial dynamic model to study the coupled natural-human responses in the 

form of population changes in the Lower Mississippi River Basin region. The goal was to 

identify the key social-economic factors (utility) and selected environmental factors (such as 

hazards damage, elevation, and subsidence rate) that affect population changes, as well as how 

population changes affect the local utility and the local environment reciprocally. The study 

area was partitioned into the “north’ and the “south” by a hypothetical boundary to test the 

differences of the emergence. Areal interpolation techniques with volume preserving property 

were used to integrate all the data acquired from different sources and defined in various 

formats into a unified 3 km by 3 km cellular space. An Elastic Net model was built to extract 

the rules and calibrate the parameters. Genetic Algorithms were applied to calibrate the 

neighborhood effects. A Monte Carlo approach using random sampling was used to conduct 

the uncertainty analysis. The final model yielded an accuracy of above 97% in projecting both 

the population changes and the developed area percentage changes from 2000 to 2010.  

A resilience assessment framework and a sustainability assessment framework were 

used to examine the simulated results from 2010 to 2050. The low-resilience areas were found 

to concentrate in the “south” in the central metropolitan areas of New Orleans. The 

sustainability analysis shows that high-resilience areas will always be sustainable. However, 

for the low-resilience areas, three sustainability conditions can occur depending on the 

mitigation budget: the tipping space, the mitigatable space, and the sustainable space. A 

Relative Land Price concept was defined to indicate the surplus value of a spatial unit due to 

its population and utility. The low-resilience areas were found to have higher Relative Land 

Prices mainly due to their high populations. In the short time-period simulation (2010-2050), 
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the “south” will fall behind the “north” in population growth and developed land increase, and 

its average population was projected to be decreasing. However, in the long time-period 

simulation (2010-2210), its average population is able to bounce back from a certain 

population level. The results from this study will shed light on the relationships between coastal 

hazards and human responses and provide valuable insight into the development of optimal 

strategies for coastal sustainability. 
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CHAPTER 1 : INTRODUCTION 

1.1 Background 

Coastal areas have their unique benefits over inland areas, such as convenient access 

to coastal resources, marine transportations, oceanic crude oil explorations, and favorable 

climate for human living. At the same time, these areas are much more exposed to natural 

coastal hazards, including land loss, land subsidence, coastal erosion, coastal flooding, 

tsunami, sea level rise, and hurricanes. All these hazards have negative effects on the economic 

growth and social construction of the communities along the coast. In the United States, the 

Lower Mississippi River Basin (LMRB) in southern Louisiana is highly vulnerable to coastal 

hazards (Fig. 1). In the past ten years (2005-2015), the region has experienced at least five 

hurricanes (Katrina, Rita, Gustav, Ike, and Isaac), which caused significant loss of human lives 

and damages to properties (Lam et al., 2009a&b, 2012a; LeSage et al., 2011 a, b&c). With the 

impending threats of climate change and sea level rise, coastal Louisiana is facing a serious 

challenge, which is how to protect the land while maintaining economic growth, or in other 

words, how to achieve coastal sustainability. 

Figure 1.1 The Study Area with the Hypothetical North-South Boundary, and its Population 
Distribution in 2006 (LandScan Data) 
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1.2 Problem Statement 

There has been extensive research on the causes and consequences of increased 

vulnerability in the Lower Mississippi River Delta region (Blum & Roberts, 2009). Significant 

efforts from governmental and non-governmental agencies have also been made to develop 

long-term master plans for coastal protection and restoration (Coastal Protection and 

Restoration Agency of Louisiana [CPRA], 2012). However, the existing literature on coastal 

protection and restoration has largely focused on understanding the natural environment, with 

fewer studies devoted to the human side. There is very few published literature on how the 

natural and human systems are coupled in this coastal environment. Studying how the natural 

and human environments interact is critical to a better understanding of the dynamics of the 

coastal vulnerability and sustainability problem (Liu J. et al., 2007a &b; Collins et al. 2010; 

Kates, 2011).    

Moreover, in the past decade, a gradual population growth has been observed in the 

northern of the Lower Mississippi River Delta, in contrast with a dramatic decline in its 

southern part (Lam et al., 2012b). Some of the increase in population has been documented as 

the migration from the southern part of the region (Plyer, 2013). This phenomenon is 

noteworthy in that it signals a voluntary migration that is not part of the governmental coastal 

restoration plan. In other words, people choose to move to places that are less subject to natural 

hazards while providing economic opportunities. They might also want to move to places that 

are not far from their original places to maintain their cultures and social network. With 

consideration of this autonomous human factor, the traditional “top-down” approach of coastal 

restoration may not be effective in achieving a long-term protection and the coastal 

sustainability, as people may find those places not “desirable” to live even if there are land 

protection and restoration. Therefore, in planning for coastal sustainability, we must consider 

these “bottom-up” facts so that we can formulate optimal strategies on where and how to 

protect the land and its resources while maintaining economic growth.  
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1.3 Objectives 

The overall objective of this dissertation research is to develop a spatial dynamic model 

to understand the coupled natural-human responses in the form of population changes in the 

Lower Mississippi River Basin. This study seeks to answer these related questions: (1) What 

are the key socio economic factors (utility) that trigger the population changes; (2) How 

important are the environmental factors (such as natural coastal hazards, elevation, subsidence 

rate, and so on) in affecting the population changes in the LMRB; (3) Reciprocally, how do 

the changes of population affect the local utility and the local natural environment, for example, 

by increasing the local developed land use areas; (4) How to evaluate the local resilience of 

this coupled natural and human dynamic system; (5) What will the future of the region likely 

be under different animated scenarios. The findings from these studies can provide valuable 

insight into the development of optimal strategies for coastal sustainability.  

1.4 Significance and Rationale  

This research is significant in four aspects. First, this study is one of the few studies 

that focus explicitly on simulating human population changes in the context of coastal 

resilience and coupled natural and human dynamics. The simulation helps increase our 

understanding of the complex coupling process, especially on what determines the population 

changes and how the changes reciprocally affect the local land units. The results from this 

study will shed light on the relationships between climate change, human responses, and 

environmental policies. Second, few studies have attempted to measure the resilience of human 

dynamics. This study developed a system dynamic model with focuses on quantifying local 

vulnerability and resilience, capturing the complex interactions between human and nature 

components, and empirically validating the proposed measures. Finally, the use of empirical 

data and evolutionary algorithms for calibration and validation is useful. A validated 

simulation model supported by the real data will allow policy makers to design and test 

sustainable policies so that resources can be better allocated to help build the local resilience. 
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Although the simulation model was derived by the data of the Lower Mississippi River 

Basin focusing on the coast-hazard vulnerability, it can also be applied to other locations 

affected by natural disasters of the similar or other nature. Findings from this study can be used 

to support the decision-making in a broader range of sustainability planning, not only the 

coastal. A better understanding of how the human system responds to disaster events will allow 

policy makers to improve disaster preparedness plans. The simulation model will be a valuable 

tool for climate change planning. The model can also be used to predict future human 

residential location patterns under different hazard scenarios. The model results will help 

increase our understanding of  what socioeconomic indicators would affect the vulnerability 

of a land unit the most, and what planning or aid strategies would be the best to help the land 

unit in preventing population from decreasing. 

1.5 Methodology Synopsis 

To address the above objectives, there are two major challenges: (1) what do we mean 

by “vulnerability” or “resilience” and how do we measure the sustainability, and (2) how can 

we define and model the internal reciprocal mechanism of the feedback loop between the 

natural and the human environments? 

For the first challenge, the evaluation of “vulnerability” or “resilience” in this study 

was an extension of the study from the Resilience Inference Measurement (RIM) model (Lam 

et al., 2015 a&b; Li K., 2011; Li K. et al. 2015; Li C., 2013). The final “resilience” capacity 

and the sustainability were assessed by the simulated population changes under different 

scenarios with different degrees of hypothesized disturbance from natural hazards.  

For the second challenge, a set of coupled system dynamics were developed with the 

coupled feedback loops extracted from statistical models, and a spatially explicit dynamic 

model was developed to model the population changes with neighborhood effects. The spatial 

units in this model are 3km by 3km land cells. For each land cell, the aggregated population, 

the percentage of developed land use areas, and the other social, ecological, and environmental 
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variables are homogeneous and considered as its characteristics. A set of coupled system 

dynamics was designed with these variables. Statistical methods such as Elastic Net (a 

regulated regression method, see Chapter 4) were used to extract the key variables and their 

parameters in the coupled dynamics. The coupled dynamics was simulated for each single 

spatial unit, with neighborhood effects added.  The neighborhood effects was calibrated using 

Genetic Algorithms to match the real historic data.  

Thus, this research consists of three stages. The first stage is to understand the process 

of population changes through statistical analyses so that rules and parameters used in the 

simulation model are as realistic as possible. These extracted rules and parameters should be 

able to represent the human and nature interaction process in this study area.  The second stage 

is to use the system dynamics to create a “bottom-up” model so that autonomous emergence 

can be studied. The third is to further calibrate the parameters of the spatial dynamic model by 

using the evolutionary algorithm approach. Once the simulation model is calibrated and 

validated, the effects of local vulnerability and externality on the population changes, and how 

such effects propagate through time, can be estimated and visualized by the simulation model. 

The following chapters are organized in the order according to the way that can best 

interpret the three stages. Chapter 2 reviews the recent literatures on the topics of resilience, 

coupled natural and human systems, and “bottom-up” modeling techniques for complex 

systems. Chapter 3 describes the data source, the geographical unit used in this study, and the 

areal interpolation methodology. Chapter 4 focuses on the identification of the rules, the 

extraction of the variables and the building of the coupled system dynamics. Chapter 5 

introduces the neighborhood effects, and the calibration of the simulation. Chapter 6 assesses 

the resilience and the sustainability of the land cells. Chapter 7 defines the Relative Land Price 

concept to measure a relative value of the land cells due to their population and “utility” (to be 

defined later), according to the simulated results. Chapter 8 compares the simulated results 

between the “north” part and the “south” part partitioned by the hypothesized north-south 

boundary.  Chapter 9 summarizes the conclusions and the significant findings.  
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CHAPTER 2 : LITERATURE REVIEW AND CONCEPT FRAMEWORK 
DEVELOPMENT 

Before building the concept framework of the spatial dynamic model, several terms 

and concepts need to be clarified. First, it is necessary to understand the concepts of 

sustainability, vulnerability, and resilience through a solid literature review. Thus, the 

background of resilience and sustainability is reviewed in this chapter. Second, In order to 

build a reasonable coupled natural and human dynamics model, the major modeling 

approaches and techniques are also reviewed, and the advantages and verification methods for 

using these techniques were summarized. Third, the terminology used in this spatial dynamic 

model and the concept framework development are illustrated. This chapter serves as the 

theoretical foundation for the development of the proposed model. 

2.1 Coupled Natural and Human Dynamics and Complex Systems 

It has been widely recognized that to assess the resilience and the sustainability of a 

place-based system, one must consider both the natural and the human systems and evaluate 

how both systems are coupled (Bolin et al., 2000; Liu J. et al., 2007a&b; Collins et al., 2010; 

Kates, 2011). The term coupled natural and human (CNH) system was evolved to describe a 

branch of interdisciplinary study that examines the interactions between ecological and social 

systems. A simple and straightforward definition is that CNH systems are integrated systems 

in which human components interact with natural components (Liu J. et al., 2007a&b). From 

the program solicitation of the dynamics of coupled natural and human systems by the National 

Science Foundation (NSF 14-60), a CNH dynamics research should include the following 

aspects: (1) the dynamics of a natural system; (2) the dynamics of a human system; (3) the 

processes through which the natural system affects the human system; and (4) the processes 

through which the human system affects the natural system. This study emphasizes the human 

dynamics part in a CNH system, and it develops a model mainly addressing the last three 

aspects.  
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CHN systems are treated as complex adaptive systems (Levin, 1999; Gunderson & 

Hollings, 2002), rather than as separate ecological and social systems in traditional studies. 

Although there is no general agreement on the definition of complex systems, they normally 

feature large population of interacting elements. They are “complex” because the elements are 

interacting in a disordered way with no central controller, and the emergences they generated 

are difficult to be anticipated by the traditional “top-down” approaches. Studies on CNH 

systems offer unique insights into complexities that cannot be gained from separate ecological 

or social research such as the reciprocal effects, the feedback loops, the nonlinearity, and the 

thresholds of shifting system status (Liu J. et al., 2007a&b). There are many ways to manifest 

the complexity in a coupled system, including path-dependence, criticality, self-organization, 

difficulty of prediction, and emergence of qualities not analytically tractable from system 

components and their attributes alone (Sole & Goodwin, 2000; Manson, 2001; Bankes, 2002). 

2.2 Vulnerability, Resilience, and Sustainability 

There is abundant literature on vulnerability, resilience, and sustainability (National 

Research Council NRC, 2012). Some researchers define resilience as the speed of a system 

returning to the original state after disruption, whereas others define resilience as the 

magnitude that a system could be perturbed without shifting to a different state (Holling, 1973, 

1996; Walker et al., 2006a&b). The two definitions reveal two different ways of assessing the 

resilience capability of a given system: either by measuring the speed of return or by measuring 

the threshold of changing. Both definitions imply that resilience is an ability of a system to 

fight against disturbances from the outside environment. Adger and others (2005: p.1036) 

defined resilience as “the capacity of linked social-ecological systems to absorb recurrent 

disturbances such as hurricanes or floods so as to retain essential structures, processes, and 

feedbacks”.  

The term vulnerability is closely related to resilience in the literature (Lam et al., 

2015a). Folke and others (2002) considered vulnerability as “the propensity of an ecological 
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system to suffer harm from exposure to external stresses and shocks”. Turner and others (2003) 

considered vulnerability to include three dimensions: exposure to the hazard, sensitivity of the 

population to that exposure, and an ability to adapt to the changing circumstances. Cutter and 

others developed an index of social vulnerability, which is a measure of both the sensitivity of 

a population to natural hazards and its ability to respond to and recover from the impacts of 

hazards (Cutter & Finch, 2008). The Intergovernmental Panel for Climate Change (IPCC) 

defined vulnerability as a function of exposure, sensitivity, and adaptive capacity (IPCC, 2001; 

Yusuf & Francisco, 2009). In this study, we consider resilience a bigger concept that includes 

both aspects of vulnerability and adaptability. In terms of indicators representing vulnerability 

and adaptability, they are often overlapping with each other and used interchangeably (Cutter 

et al., 2003 & 2010; Sherrieb et al., 2010; Community and Regional Resilience Institute 

(CARRI), 2013a&b).  

Sustainability is commonly defined as “the capacity of society to meet its current needs 

while assuring the wellbeing of future generations” (National Council on Science and the 

Environment [NCSE], 2013). Turner (2010) discussed the differences and commonalities 

between vulnerability and resilience and how they are related to sustainability science. He 

proposed the use of the concept of “tradeoffs” (among various sets of environmental services 

and human outcomes) as the key for intellectual fusion among the three concepts 

(vulnerability, resilience, and sustainability). Lately, resilience and sustainability are 

considered the new dual challenges to society (NCSE, 2013). In this dissertation, we adopt the 

position that resilience insures continuity, whereas sustainability insures balance. Resilience is 

a prerequisite of sustainability, and long-term resilience is sustainability (Lam at al., 2012b). 

Despite the voluminous literature on resilience, vulnerability, and sustainability, there 

is no widely accepted index reflecting these concepts. The difficulties of resilience assessment 

arise because of the numerous definitions, and for those who have attempted to derive an index, 

there is seldom any validation. Developing metrics for measuring resilience is a priority (NRC, 

2012). In this study, the assessment of resilience of a community will be based on the 
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Resilience Inference Measurement (RIM) model, which was developed previously by our 

research group (Baker, 2009; Li K., 2011; Lam et al., 2015a&b; Li et al., 2015). The RIM 

model creates a new way to measure community resilience and has both the properties of 

validation and inference. The RIM model considers three dimensions and two abilities (or 

disabilities). The three dimensions are: (1) the exposure to hazards (such as the number of 

times a community is hit by hurricanes or climate-related hazards), (2) the damage from 

exposure to hazards (such as property damages), and (3) the recovery (such as population 

return). The community’s ability to minimize the damage at the time of the event is called 

vulnerability. Similarly, the community’s ability to bounce back over time is called 

adaptability. 

In the RIM model, four resilience states from the lowest to the highest resilience, 

susceptible, recovering, resistant, and usurper, are defined. A susceptible system is considered 

the least resilient, as it has high vulnerability and low adaptability. A recovering system has 

about the mean vulnerability and adaptability. A resistant system has low vulnerability and 

average adaptability, whereas a usurper system has low vulnerability but very high 

adaptability. K-means clustering method is used to identify the discrete states of resilience of 

each geographic unit, and discriminant analysis is used to test the socioeconomic and 

environmental variables that discriminate these states. The selected variables are used to 

develop the resilience assessment function. 

2.3 Population Changes and Residential Dynamics 

Literature on population changes and residential dynamics is huge. However, studies 

that model human population dynamics in the context of vulnerability, resilience, and 

sustainability are not common. The United Nations defined several types of human migration 

and relocation according to the motives: urbanization, family reunification, impelled or 

reluctant migration, labor migration, forced migration, return migration, student migration, 

chain migration, and seasonal migration (Claydon, 2012). Different studies took their different 
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favorite factors, such as lifecycle, economic motivations, neighborhood facilities, 

environmental amenities, and/or housing quality (Lindberg et al. 1992; Nijkamp et al. 1993; 

Dokmeci & Berkoz, 2000; Torrens, 2001; Yin & Muller, 2007; Niedomysl, 2008). Studies on 

the simulation of residential dynamics can be traced back to the basic segregation model as 

early as in the 1970s (Schelling, 1971). Most of the recent studies used “bottom-up” 

approaches featuring ABM techniques. Benenson (1998) examined the inhabitants’ behaviors 

using changing economic and cultural status as well as the properties of local and global 

environment; the study is among the earliest on residential dynamics using ABM. Kii and Doi 

(2005) proposed a multi-agent model for testing various development policies. Li and Liu 

(2008) incorporated the sustainability theory into ABM. Fontaine and Rounsevell (2009) 

integrated household life-cycle events in their HI-LIFE ABM. With a few exceptions (Schultz 

and Elliott, 2012), studies on modeling residential dynamics in the context of hazard, 

vulnerability, or resilience remain to be scarce.  

There are many issues in applying “bottom-up” methods in modeling residential 

dynamics. A major problem is how to explicitly define the dynamics of the “bottom” spatial 

units using empirical information. Li and Liu (2007) used an ABM modeling approach and 

determined the parameters of their ABM according to multi-criteria evaluation techniques; 

however, their method assumes all the modeling units perform the same way as experts. Urban 

economic theory has been widely used (Fujita, 1989; Krugman, 1991; Anas & Kim, 1996; 

Chen, 2012), which demonstrates that the formation of urban spatial structure is an endogenous 

process resulting from the interactions among individuals, assuming a monocentric study area, 

with population density, land value, and housing price declining with distance from the center 

(Anas et al, 1998; Parker and Filatova, 2008). Recent studies extend this urban economic 

theory by incorporating developers’ decisions on open space amenities and spatial externalities 

(Cavailhes et al, 2004; Caruso et al, 2007; Irwin and Bockstael, 2002; Wu and Plantinga, 2003), 

and by extending the space into polycentric form (Fujita and Ogawa, 1982; Fujita and Thisse, 

2002; Munroe, 2007). Some empirical statistical models also gain popularity in specifying the 
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local special dynamics, such as discrete choice model that uses conditional logit regression 

equation to predict parameters (McFadden, 1978; Bruch and Mare, 2012; Bruch, 2014). This 

study used statistical analysis (Elastic Net) to extract the rules to develop the coupled spatial 

dynamics and applied them to the spatial units. Then evolutionary algorithms were used to 

optimize the neighborhood effects.  

2.4 Modeling Techniques of Complex Systems  

To understand the complexity in many theoretical (e.g., Epstein & Axtell, 1996; 

Axelrod & Cohen, 1999; Axtell et al., 2002) and empirical CNH studies (Benenson & Torrens, 

2004; Batty, 2005, 2007), two major modeling tools, cellular automata (CA) (Batty et al., 1994, 

1997; Clarke & Gaydos, 1998; Malanson et al., 2006a & b, Qiang and Lam, 2015), and agent-

based modeling (ABM), have been extensively employed. There is significant overlaps 

between the two approaches. Increasingly researchers combine both approaches to examine 

complex systems (Brown et al., 2006; Brown & Xie, 2006; Bennett et al., 2011). There are 

indeed a variety of agent-based models developed by different researchers for different 

applications. However, despite recent attempts to develop protocols and ontology for CNH 

systems and sustainability modeling, cross-fertilization between the various models remain 

very difficult (An, 2011; Nyerges et al., 2014; An et al., 2014).” 

Bazghandi (2012) summarized some advantages of using ABM over other modeling 

techniques in complex systems modeling: the ability to capture emergent phenomena, 

providing a natural description of a system, and flexibility. Although Bazghandi’s comments 

were meant for ABMs, these benefits are actually shared by many “bottom-up” modeling 

approaches. In most “bottom-up” modeling approaches, the ability to reveal emergent 

phenomena is the key benefit. The unique advantage of capturing emergent phenomena is that 

researchers do not need to know the macro-pattern dynamics. Only the micro-rules that control 

local interactions are needed to be specified, and the macro-level results that emerge through 

the simulation of the specified micro-interactions can be measured. The bottom-up modeling 
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approach gives researchers the opportunity to gain knowledge and understanding of emergent 

phenomena previously beyond their reaches. In many cases, a “bottom-up” model design is the 

most natural way for describing and simulating a system composed of “behavioral” entities, 

and makes the model more likely to be closer to reality. The flexibility of “bottom-up” 

modeling approaches can be observed in multiple ways. First, it is easy to increase or reduce 

the independent bottom-level “behavioral” entities. It is also easy to tune the complexity of the 

modeling units, by changing their behaviors, their ability to learn and evolve, and the rules of 

interactions. It is also flexible to change the levels of description and aggregation. The model 

can be changed to animate at different levels, including the aggregate modeling units, 

subgroups of modeling units, or individual modeling units, all of which can coexist in a 

complex system. 

2.4.1 Features of Cellular Automata 

In this study, the spatial dynamic model developed is like a cellular automata model in 

some aspects, because the spatial units are represented by cells and the updating rules of the 

spatial units’ attributes are similar to cellular automation rules. A cellular automata model uses 

cells with different states as the smallest modeling units, and defines the rules for updating the 

states over time with the consideration of the neighborhood effects. In a cellular automation 

model, each cell has a state space, from which the cell can choose its state values. The states 

are controlled by a set of cellular automation rules. The cellular automation rules set the state 

of each cell at each time step, according to its previous state and its neighbor cells’ previous 

states. In some cellular automata models (Boccara and Cheong, 1992, 1993), the cells can also 

have mobility with certain site-exchange rules defined. Figure 2.1 shows the structure of a 

cellular automata model.  
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Figure 2.1 Structure of a Cellular Automata Model 

The spatial units in this study are similar to the cellular automata in terms of 

representation by situated cells. However, different from the classic cellular automata which 

only have discrete states, the spatial units have a set of continuous attributes interacting with 

each other over time and space, and these interactions reflect the spatial units’ capability of 

sensing the environments and acting on them. 

2.4.2 Features of Agent Based Modeling 

ABM, as an approach to simulating the behavior of a complex system in which agents 

interact with each other and with their environment using local rules, has gained popularity 

and widespread use in many fields of study. ABM techniques have been used to study complex 

systems effectively, and have been proven to be fruitful in human system simulation 

(Monticino et al., 2007; Evans & Kelly, 2004; Murray-Rust et al., 2013). 

There is no precise definition with universal agreement of the term agent in the context 

of ABM (Macal and North, 2011).  Some studies considered any type of independent 

component, either a software component or a sub-model, as an agent (Bonabeau 2001). Other 
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researchers insisted that an agent’s behavior must include adaptive components to represent 

the responses of the agents to the environment (Conte, 2002). Jennings (2000) from a computer 

science view emphasized the autonomous behavior of an agent an essential characteristic in an 

ABM. Figure 2.2 shows the basic structure of an ABM, which emphasizes some common 

points shared by these various definitions. These common characteristics of ABMs include 

that: (1) the agents have the ability to change their physical locations and modify their 

attributes, (2) the agents can actively sense the environment conditions and response 

accordingly, and (3) the agents can interact with other agents within their perspectives. 

Figure 2.2 Structure of an Agent Based Model  

Inspired by some of definitions of features of ABM (Wooldridge, 1995; Russel, 1995), 

three characteristics are considered as useful for my system dynamic model: autonomy, 

interaction ability, and reactivity. Autonomy means that units in the model can self-control 

their own internal states without interventions from other controllers. Interaction ability means 

that units in the model are able to interact with other units located within their perspectives. 

Reactivity means that units in the model are capable of perceiving their environment and 
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responding. The spatial dynamic model developed in this study is not an ABM, however the 

developed model process these three features. 

2.5 Lagrangian V.S Eulerian 

In modeling the spatial dynamics of a system, two frameworks originally from the fluid 

dynamics modeling researches can be used: Lagrangian and Eulerian (Zhang and Chen, 2007). 

In a Lagrangian framework, the dynamics of the individuals are modeled by tracking their 

positions from places to places over time. In contrast, a Eulerian framework only focuses on 

the in-and-out flows constituted by the individuals to situated fields. For the modeling of the 

human dynamics in this study, a Lagrangian framework fits better in modeling the population 

migration from places to places, whereas a Eulerian framework is more suitable for modeling 

the population changes. Contraposing the spatial dynamic model in this study, a Eulerian 

framework was used to model the population changes, since the data for human migration is 

not available but only population changes data is available. Thus situated cells were used as 

the bottom-level spatial units in this model. Figure 2.3 shows of the differences between a 

Lagrangian Framework and a Eulerian Framework for modeling the spatial dynamics in this 

study. 
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Figure 2.3 Lagrangian Framework V.S Eulerian Framework 

In Figure 2.3, a cellular space is defined for modeling the dynamics of certain entities. 

A Lagrangian framework simulates the movements of the entities from places to places in the 

space with some adding-ins and moving-outs of the entities over time. In contrast, a Eulerian 

framework simulates the factors that influence the in-and-out flows consisting of the entities 

between each situated field and its neighbor fields or the external field out of the cellular space. 

2.6 Calibration and Genetic Algorithms  

When developing a complex system model consisting a lot of interacting units, the 

tuning of the model constitutes a crucial step of the design process. Indeed, a complex system 

model is generally characterized by lots of parameters, which together determine the global 

dynamics of the complex system. It typically have many parameters governing the behavior of 

the system, and using Genetic Algorithms (GA) is one of the choices to tune these parameters. 

GAs have been applied successfully to optimize these parameters, in many complex system 
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models, most of which are ABMs (Calvez & Hutzler, 2006; Heppenstall et al., 2007; 

Namboodiri, 2006; Wang & Zhang 2012). The approaches common to all these previous 

studies are that they all consider the calibration and validation of a model as an optimization 

problem. The optimization function would be the difference between the simulated and the real 

systems. Genetic Algorithms are used to explore the parameter space and to find the best 

parameter set with respect to the optimization function. 

Genetic algorithms are a family of computational models inspired by the evolution 

theory. In a GA’s framework, the potential solution of a problem is encoded as a linear data 

structure, which is called a chromosome. The algorithm works on a set of chromosomes that 

is called a population. Operators are applied to this population. Each chromosome is then 

evaluated using a fitness function, which measures how good this potential solution is with 

respect to the initial problem. A selection is made among the population of chromosomes. 

Recombination and mutation operators are then applied to this population. The recombination 

consists in swapping parts between two chromosomes, which is the most frequent operator in 

genetic algorithms. The mutation consists of changing a part of a chromosome. The best 

solution will be driven from the last generation of population with the highest fitness function 

score.  

2.7 The Framework of the Spatial Dynamic Model 

A typical framework of a spatial dynamic model would include: the definition of the 

modeling units, the definition of the functions controlling the dynamics within each modeling 

unit, and the definition of the essential characteristics of the modeling units. In this study, the 

spatial dynamic model consists of the following components: a set of spatial units as the 

modeling units, a set of finite internal states and their initials for the spatial units, a set of 

functions that determine a spatial unit’s internal states and its actions over time (autonomy 

functions), a set of functions that determine the inputs from other spatial units and the outputs 
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to them (interaction functions), and a set of functions determine a spatial unit’s responses to 

the natural environment (reactivity functions). 

Two major challenges in applying the “bottom-up” approaches to model the complex 

systems are: first, the typical large number of bottom-level entities can require sufficient 

computation time to limit analyses that use hundreds of runs, second and most importantly, the 

data for the individual entities are often only available in aggregative forms, such as at the 

county, the census tract, or the census block level for the human dynamics components. In 

order to build an empirical model for a relatively large geographic scale such as the Lower 

Mississippi River Basin in this study, modeling units defined in an aggregation form need to 

be used (Scheffer et al., 1995; Hellweger, 2008). In this study, spatial units immersed in a 

cellular space were designed in an attempt to capture the emergent phenomena of the coupled 

system dynamics, which are the outcomes of the social, economic and environment variables 

of these spatial units interacting over space and time. A spatial unit will be used as a coherent 

modeling unit of the analysis on the coupled human and natural dynamics. A spatial unit is an 

aggregation of the population with the homogeneous social and economic characteristics 

located in the same land area. The spatial units are situated entities located in a grid space, and 

a spatial unit is represented by a 3km by 3km grid lattice.  

The internal states of a given spatial unit in this study are the number of population it 

contains and its socioeconomic characteristics (utility). Autonomy functions control the flows 

of the internal states. The spatial units’ responses to their environment in this study are reflected 

by the changes of the developed land area percentage of the land area they locate in. Reactivity 

functions control the responses of the spatial units to their environment. It should be noted that 

with the consideration of neighborhood effects, the reactivity responses of a spatial unit not 

only change the developed land are percentage of the land area it locates in but also affect the 

changes of the developed land area percentage of its neighboring land areas. Interaction 

functions affect the spatial units’ response actions using the outputs from its neighboring 

spatial units as inputs. The outputs of each spatial units are the changes of its internal states 
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(population and utility), and these outputs are the inputs to its neighboring spatial units. Taking 

the internal state of population as an example, the spatial units actively use the autonomy 

functions to calculate their population changes at each time step and output them to their 

neighboring spatial units. For each spatial unit, the outputs from its neighbors are received by 

its interaction functions as input and response actions will be triggered. These actions will lead 

to population changes of this spatial unit in the next time step, hence its population changes 

are determined not only by its autonomy functions but also its interaction functions. The 

updating rules of the spatial dynamic model in this study are tightly bonded with these three 

sets of functions. The structure of the spatial units in this study are shown in Figure 2.4. 

Figure 2.4 Structure of the Modeling Units of the Spatial Dynamic Model in this Study 

In comparison with cellular automata, the spatial units in this study are similarly 

represented by the situated cells, but they have more than one continuous state variables, the 

changes of which are driven by the three sets of functions with several feedback loops. 
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Borrowing form some ABMs, the three characteristics of the ABMs are reflected in this 

Eulerian model by the three sets of spatial dynamic functions of the spatial units: autonomy, 

interaction ability, and reactivity. The autonomous characteristic is reflected by that a spatial 

unit is able to control its internal state. Interaction ability is included because the spatial units 

are able to “communicate” with their neighbors. Finally, the fact that the spatial units are able 

to actively perceive their environment and react accordingly that leads to population changes 

reflects the reactivity.   

2.8 Development Platforms  

Although the spatial dynamic model built in this study was not an ABM, an ABM 

development platform was chosen, because most of the desired functions of the modeling units 

can be realized by utilizing the embedded libraries in an ABM development platform. The 

ABM development platforms are as diverse as the community of people who use them. With 

so many toolkits available, the choice of which one is best suited for a project is especially 

troublesome for researchers. Nikolai and Madey (2008) characterized each possible platform 

based on five important characteristics users consider when making choices, and then 

categorized their characteristics into user-friendly taxonomies, which offered a useful guide. 

The five characteristics they examined are: language required to program a model and to run a 

simulation, operating system required to run the toolkit, type of license that governs the toolkit, 

primary domain for which the toolkit is intended, and types of support available to the user.  

Various ABM tool kits such as Swarm (http://www.swarm.org), Repast 

(http://repast.sourceforge.net), Net Logo (http://ccl.northwestern.edu/netlogo), TerraME 

(http://www.terrame.org), GAMA (https://github.com/gama-platform), MASON 

(http://cs.gmu.edu/~eclab/projects/mason), and AnyLogic (http://www.anylogic.com) have 

been chosen and used by various researchers. Each one of those have different capabilities 

such as ease of GIS integration and the level of programming expertise required. Various 

surveys give a better understanding of the abilities of these modelling platforms (Nikolai and 
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Madey, 2008; Railsback et al., 2006). AnyLogic was chosen because of its proven capabilities 

to support spatial simulations and the extensive user support available through its website.  
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CHAPTER 3 : STUDY AREA AND DATA 

3.1 Study Area 

The study area, broadly recognized as the Lower Mississippi River Basin (LMRB), is 

located in southeastern Louisiana and extends from the parishes (i.e. counties) north of Lake 

Pontchartrain to the Gulf coast (Fig. 1.1). It consists of 25 counties and two major metropolitan 

areas (New Orleans in the South and Baton Rouge in the North). In this research, Lake 

Pontchartrain is considered as an approximate boundary, where parishes north of the Lake are 

considered the “North”, whereas parishes south of Lake Pontchartrain are labeled as the 

“South”. According to the U.S. 2010 census statistics, the total population in the study area 

was 2,699,486. During the past decade (2000-2010), average population increased by 3.26%. 

Parishes in the North experienced very high population growth (e.g., Ascension Parish 39.9% 

and Livingston Parish 39.4%), whereas parishes in the South had high population decrease 

(e.g., St. Bernard Parish -46.6% and Orleans Parish -29.1%)(Lam et al., 2012). Some of the 

increase in population in the North has been documented to be from the South (Plyer, 2013). 

Many other factors were also cited as potential reasons (Crisp, 2014).  

3.2 Data Acquisition and Description 

Three sets of data were collected: (1) Natural hazards data were obtained from the 

“Storm Data and the Storm Events Database” maintained by the National Climate Data Center 

(NCDC) from the National Oceanic & Atmospheric Administration (NOAA) 

(http://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/). Five major types of coastal hazards 

were included in this study: coastal (which includes coastal flooding and storm surge), flood, 

hurricane, thunderstorm, and tornado. The detail definitions of these hazard types are listed in 

Table 3.1. The locations of these hazards data come in three formats: counties or zones (a 

combination of several counties), metropolitan areas, or point locations with longitudes and 

latitudes.  



33 

Table 3.1 Major Types of Coastal Hazards in this Study with Descriptions 
Types of Hazard Events Description of the Hazard Events (Definition By NOAA-NCDC) 

Coastal  

Flood 
Flooding of coastal areas due to the vertical rise above normal water level caused 
by strong, persistent onshore wind, high astronomical tide, and/or low 
atmospheric pressure. 

Storm 
Surge/Tide 

For coastal and lakeshore areas, the vertical rise above normal water level 
associated with a storm of tropical origin (e.g., hurricane, typhoon, or tropical 
storm) caused by any combination of strong, persistent onshore wind, high 
astronomical tide and low atmospheric pressure. 

Flood 
Any high flow, overflow, or inundation by water which causes or threatens 
damage. 

Hurricane/Typhoon 
A tropical cyclone in which the maximum 1-minute sustained surface wind is 64 
knots (74 mph) or greater. 

Thunderstorm Wind 
(Severe) 

Winds, arising from convection (occurring within 30 minutes of lightning being 
observed or detected), Severe Thunderstorms have speeds of at least 50 knots (58 
mph). 

Tornado 
A violently rotating column of air, extending to or from a cumuliform cloud or 
underneath a cumuliform cloud, to the ground, and often (but not always) visible 
as a condensation funnel. 

(2) Demographic and socioeconomic data were obtained from the U.S. Census Bureau 

(http://www.census.gov/). Population count data was obtained at the census block level, 

whereas the other social and economic variables were obtained at the census tracts level. (3) 

Environmental data, including elevation, water body locations, and road transportation 

networks were obtained from the Nation Map View developed by the U.S. Geological Survey 

(USGS) (http://viewer.nationalmap.gov/viewer/). (4) The land cover and land use data were 

obtained from the Multi-Resolution Land Characteristics Consortium (MRLC) 

(http://www.mrlc.gov/). (5) Subsidence Rates data were from the NOAA Technical Report 50: 

Rates of Vertical Displacement at Benchmarks in the Lower Mississippi Valley and the 

Northern Gulf Coast (http://www.ngs.noaa.gov/heightmod/Tech50.shtml).  (6) Energy 

structures data such as pipeline and oil/gas wells locations were from the Louisiana Department 

of Natural Resources (LDNR) Oracle database (http://sonris.com/dataaccess.asp). All the 

variables collected for the interpolation and the model building are listed in Table 3.2 and Table 

3.3.  
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Table 3.2 Acronyms and Descriptions of the Socioeconomic and Housing Variables used in 
this Study. 

Socioeconomic and Housing Variables 

Categories Acronym Description Year 

Housing  

Occupied Percent; Occupied Housing Units 2000, 2010 

NonVehicle Percent; Occupied Housing Units with No Vehicles  
Available 

2000, 2010 

NonFuel Percent; Occupied Housing Units with No House Heating 
Fuel Used 

2000, 2010 

NonPlumb Percent; Occupied Housing Units Lacking Complete 
Plumbing Facilities 

2000, 2010 

NonKitchen Percent; Occupied Housing Units  Lacking complete Kitchen 
Facilities 

2000, 2010 

NonTele Percent; Occupied Housing Units with No Telephone 
Service 

2000, 2010 

NonMtg Percent; Specified Owner Occupied Units without Mortgage 2000, 2010 

OwnerR Percent; Owner Occupied Housing Units 2000, 2010 

MedValue Number; Median Value of Specified Owner Occupied Units 
(Dollars) 

2000, 2010 

MedRent Number; Median Gross Rent of Specified Renter Occupied 
Units (Dollars) 

2000, 2010 

Households 

OCST20 Percent; Owner Cost as a Percentage of Household Income 
Less than 15 Percent 

2000, 2010 

OCST35 Percent; Owner Cost as a Percentage of Household Income 
More than 35 Percent 

2000, 2010 

Rent15 Percent; Gross Rent as a Percentage of Household Income 
Less than 15 Percent 

2000, 2010 

Rent35 Percent; Gross Rent as a Percentage of Household Income 
More than 35 Percent 

2000, 2010 

OCSTWMTG Number;  Median Selected Monthly Owner Costs with a 
Mortgage (Dollars) 

2000, 2010 

OCSTNMRG Number; Median Selected Monthly Owner Costs without a 
Mortgage (Dollars) 

2000, 2010 

HhSize Number; Average Household Size 2000, 2010 

MeanTime Number; Mean Travel Time to Work (Minutes) 2000, 2010 

MedIcm Number; Households Median Income (Dollars) 2000, 2010 
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Table 3.3 Acronyms and Descriptions of the Demographic and Environmental Variables used 
in this Study. 

Demographic and Environmental Variables 
Categories Acronym Description Year 

Individuals 

Female Percent; Total Female Population  2000, 2010 
Population Number; Total Population 2000, 2010 
Under5 Percent; Total Population under 5 Years Old 2000, 2010 
Over65 Percent; Total population over 65 Years Old 2000, 2010 
HighSch Percent; Population over 25 Years Old with High School 

Graduation or Higher 
2000, 2010 

Married Percent; Population over 15 Years Old and Now Married 
(Except Separated) 

2000, 2010 

Employed Percent;  Population over 16 Years Old Employed 2000, 2010 
Poverty Percent; Individuals  below Poverty Level 2000, 2010 

Structures 
Road Number; Road Density 2007 
Pipeline Number; Pipeline Density 2007 
GasWell Number; Oil and Gas Injection Wells Density 2007 

Environmental 

Damages Number; Property Damages in 2010 Inflation Rate (dollars) 2000 to 2010 
Subsidence Number; Subsidence Rate Interpolated by Empirical Bayesian 

Kriging using Bench Marks  
2004 

Elevation Number; Mean Elevation Calculated from LIDAR images 
(Meters) 

2000 to 2010 

Land Use and 
Land Cover 

Developed Percent; Percent of Developed Land Use Area 2001, 2011 
Water Percent; Percent of Open Water Land Use Area 2001, 2011 

3.3 Data Preprocessing 

Since the spatial units of the simulation model are in grid form (3km by 3km) and the 

data acquired are in various forms and at various scales, areal interpolation is needed to 

integrate the disparate data into a single platform. For data defined in vector data form, such 

as roads, pipelines, and oil/gas wells, kernel densities were calculated before areal interpolation 

to convert them into a continuous surface. For the variable of property damages, the events 

collected at point locations and city area locations were summarized into the county they 

belong to. For the subsidence rate variable, point interpolation is needed to convert it from 

points to a continuous surface.  

The variable of subsidence rate was interpolated using the Empirical Bayesian Kriging 

method. Classic Kriging is a geostatistical technique that uses a “semivariogram”, a function 

of the distance separating two locations and their variance, to quantify the spatial dependence 

in the data. This semivariogram is then used to define the weights that determine the 

contribution of each observed data point to the prediction of new values at the un-sampled 
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locations (Lam, 1983, 2009). The Empirical Bayesian Kriging (EBK) differs from the classical 

kriging methods by accounting for the error introduced by estimating the semivariogram model 

(Krivoruchko, 2011). For EBK, after the semivariagram model is built, a new value is 

simulated at each of the input data locations. A new semivariogram model is estimated from 

the simulated data. Then the Bayes' rule is used to calculate a weight for this semivariogram, 

which shows how likely the observed data can be generated from the semivariogram. The 

semivarigram generation process is iterated and creates a spectrum of semivariograms (Figure 

3.1).  

Figure 3.1 Spectrum of Semivarigrams of the Yearly Subsidence Rate in the Study Area 

In Figure 3.1, the median of the distribution is shown with a solid red line. The 25th and 

75th percentiles are colored with red dashed lines. The width of the blue lines is proportional 

to the semivariogram weights so that the models with smaller weights are shown by thinner 

lines. The final EBK predictions of the un-sampled locations for the average yearly subsidence 

rate are calculated using these weights.  

3.4 Areal Interpolation 

The data obtained in this study were from different temporal and spatial scales, such as 

subsidence data in point form, census data at the block, block-group, or census tract scale, and 

remote sensing images such as land use and land cover data in pixels. Even for the census data, 

especially at the block level, the geographic boundaries changed a lot over the study time span. 

For example, there were 62,716 blocks in the year 2000, but the number increased to 94,609 

in the year 2010. The number of census tracts were 654 in the year 2000, but became 683 in 

the year 2010. Thus, there is a crucial need to create a single platform that incorporates all 
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these data from heterogeneous sources and units into a unified set of geographic spatial units 

to make them spatially and temporally comparable.  

The term “areal interpolation” was first coined in Goodchild and Lam (1980) to denote 

the problem of transforming data defined in one set of areal units (source zones) to another 

(target zones), where the two sets of boundaries do not coincide (Lam 1980, 1983, 2009). The 

target zones for the areal interpolation in this study were the 3km by 3km contiguous cells. 

The 3km by 3km size was chosen with the consideration of a tradeoff between the resolution 

and the computational-time consumption later in the spatial dynamic model. Also the cell size 

is approximately equal to the average size of census tracts in urban area, the level at which 

most of our social and economic data were acquired. There are totally 5,890 3km by 3km grids 

in the whole study area.  

The areal interpolation procedure used in this study was an “intelligent” areal 

interpolation method (Cromley et al., 2012) that has the volume-preserving property. This 

study used the areal-weighting method with the developed land cover area as an ancillary layer. 

Ancillary data such as land cover in this study are called “control’ variables. Areal interpolation 

with additional control variables is very similar to the principle of dasymetric mapping, a 

mapping technique designed to reflect within-zone variations (Lam, 1983, 2009). 

With ancillary data, the accuracy of areal interpolation can be substantially improved. 

In this binary dasymetric method, control variables (land-cover data) were used to identify 

locations where certain attribute would not exist. In this study, it was assumed that only the 

developed area can have the values of the social and economic variables to be interpolated. 

Therefore, instead of using the total area of the source zone to derive the weights in areal 

weighting interpolation, only the developed area was used. For example, in estimating the 

population counts for the target zones (3km by 3km grids), if a source zone or a target zone 

has a large body of water area, it can be assumed that the water area does not have population. 

In summary, for a given target zone, its interpolated value is the weighted mean of the values 

of the source zones intersected with it, and the weights are defined by the total areas of these 
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intersected areas on the ancillary layer. Figure 3.2 shows the areal interpolation process in this 

study with ancillary data. 

Figure 3.2 Areal Interpolation with Ancillary Layer in this study  

There were two types of variables to be interpolated: “average rate” (intensive data 

such as median household income and percentage of individuals employed), and “total 

amount” (extensive data such as total population and total property damages).  For the variables 

of the “average rate” type, a target zone’s value was the mean of the values of the source zones, 

which the target zone intersects, weighted by the developed area.  For the variable of the “total 

amount” type, the total number of developed land area pixels was calculated for each source 

zone. The value of a variable was divided by the total number of developed pixels in that source 

zone and assigned to the developed pixels in that source zone. Then the new target-zone value 

of this variable was simply the sum of the values of all developed cells within the target zone. 

Take the population density of 2000 (number of people per 9 km2) as an example, the values 
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of the source zones (at the census block level), which means the values before the areal 

interpolation, are shown in Figure 3.3, and the values of the target zones (the 3km by 3km 

grids), which means the values after the areal interpolation, are shown in Figure 3.4. The 

comparisons of some other selected variables between before and after areal interpolation are 

shown in Appendix A.  

Figure 3.3 Population Density of the Census Blocks in 2000 
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Figure 3.4 Population Density of the 3km by 3km Grids in 2000 
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CHAPTER 4 : VARIABLE SELECTION AND RULES EXTRACTION 

The variable selection and rules extraction methods of the spatial dynamics model are 

described in this chapter. There are three stock variables in the system dynamics: population, 

developed land area percentage, and utility. The stock variable of utility is defined as a linear 

combination of the selected socio-ecological variables (details in Section 4.1.3). Elastic Net, a 

type of regulated linear regression approach, was used to select the variables, determine their 

coefficients, and derive the coupled relationships within the spatial dynamic model.  

4.1 Regulated Regression  

In order to derive the relationships to be applied to the spatial dynamic model, statistical 

learning methods that ensure the discovery of the most relevant predictive variables with a 

high prediction accuracy is needed. A possible way is to use the best subset selection approach, 

which conducts the ordinary regression on each possible subset of all the variables and picks 

out the subset with the highest R2 Value. However, this method becomes infeasible for variable 

selection from high-dimensional data due to high computational cost (Zou and Li, 2008). 

Furthermore, the best subset selection suffers from several drawbacks, the most severe of 

which is its lack of stability as analyzed in Breiman (1996).  

4.1.1 Stepwise Multiple Regression 

Stepwise regression is one of the most widely used method of variable selection. 

Stepwise multiple regression algorithms operate by successive addition of significant variables 

(forward selection), or successive removal of significant variables (backward elimination), 

according to a specified criterion of variance. Whittingham (2006) examined papers published 

in 2004 in three leading ecological and behavioral journals (Journal of Applied Ecology, 

Animal Behavior, and Ecology Letters) and found that out of the 65 papers in which a multiple 

regression approach was used, 57% of the studies used a stepwise procedure. 

However, a number of publications have drawn attention to the problems of bias arising 

from variable selection on the basis of statistical significance in stepwise regression (e.g. 
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Anderson et al., 2000; Burnham and Anderson, 2002). Whittingham (2006) summarized that 

the principal drawbacks of stepwise multiple regression include bias in parameter estimation, 

inconsistencies among model selection algorithms, an inherent problem of multiple hypothesis 

testing, and an inappropriate focus or reliance on a single best model. The problem of 

inconsistencies, arising from the order of parameter entry (or deletion) and the number of 

candidate parameters (Derksen and Keselman, 1992) is particularly acute when the predictors 

have collinearity (Grafen and Hails, 2002).  

4.1.2 Elastic Net 

Due to the above reasons, Elastic Net, a new regularization and variable selection 

method proposed by Zou and Hastie (2005), was chosen in this study as the approach to select 

the variables and derive relationships for the spatial dynamic model. Elastic net is a hybrid of 

the Lasso regression (Tibshirani, 1996) and the Ridge regression (Hoerl & Kennard 1988), 

both of which add a penalty term in the fitting function of ordinary linear regression, and the 

penalty terms are often referred to as L1 and L2 penalty, respectively. The Ridge regression can 

achieve the goal of continuous shrinkage of the parameters, but it cannot produce a 

parsimonious model, because it always keeps all the predictors in the model. The Lasso 

regression can achieve the goal of both continuous shrinkage of the parameters and automatic 

selection of the variables simultaneously. However, the Lasso regression tends to select only 

one variable from the group, among which the pairwise correlations are very high, and does 

not care which one is selected. If there exists high collinearity among predictors, it has been 

empirically observed that the prediction performance of the Lasso regression is dominated by 

the Ridge regression (Tibshirani, 1996). The Elastic Net used in this study can do the job of 

both automatically selecting the variables as the Lasso and keeping a high prediction 

performance when collinearity exists as the Ridge (Zou and Hastie, 2005). The regularization 

problem of Elastic Net is defined as minimizing the parameter β0 and β in Equation 4.1. 
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where N is the number of observations, yi is the value of the dependent variable at observation 

i. xi is a vector of the values of the independent variables at observation i, λ is a positive

regularization parameter, parameters β0 and β are the coefficients to be estimated, βj is the jth 

element in β, p is the number of independent variables, and α is the parameter that determines 

if the regression model is more like a Lasso or a Ridge regression. As λ increases, the number 

of nonzero components of β decreases, which means the number of variables selected 

decreases, and vice versa. The Elastic Net is the same as a Lasso regression when α equals one. 

On the contrary, as α shrinks toward zero, the Elastic Net approaches a Ridge regression. 

4.1.3 Relationship Development 

From Chapter 3, all the data were spatially interpolated into the 3km by 3km grids. 

Each grid is a homogeneous unit with all the variables having a single value, and represent a 

spatial unit. An Elastic Net model is built with these spatial units as the sample data points, in 

order to derive a set of relationships for the spatial dynamic model to be developed later. 

In this study, population, developed land area percentage, and utility (defined later) are 

stock variables in the system dynamics model, the changes of which are to be modeled.  The 

temporal changes of these three variables between 2000 and 2010 were calculated. These 

changes are to be used as dependent variables, and to be predicted by independent variables at 

2000 in the Elastic Net model. Each spatial unit with its stock variables’ changes from 2000 to 

2010 as dependent variables and its other auxiliary variables at 2000 as independent variables 

is one sample data point for the Elastic Net model. It should be noted that for a regression 

model created in this way, the assumption is that the changes in a dependent variable (e.g., 

population) for a given set of independent variables are the same for all spatial units on the 

grid space. In other words, all the spatial units have the same set of rules extracted and only 

different initializations. In order to eliminate the data scale impact, all the variables including 

their temporal changes, were standardized before input into the Elastic Net.  
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In the first step, the goal was to identify the predictors of the population change. The 

real population change between 2000 and 2010 was input into the Elastic Net as dependent 

variable, and all the other social, economic, and environmental variables of 2000 (totally 35 

variables) were input as independent variables. The value of α was set to 0.5 to consider the 

contributions of the L1 and the L2 penalty as half each. A cross-validated mean square error 

(MSE) was used to determine the value of λ, as shown in Figure 4.1, and the degree of freedom 

(number of predictor variables selected) under each value of λ is shown in Figure 4.2. The 

cross validated MSE was calculated by dividing the whole data set into 10 groups, calibrating 

the Elastic Net using the first 9 groups, comparing the projected results of the 10th group with 

the real data, and calculating the MSE for the 10th group. The following equation shows the 

calculation of MSE. 

1
(4.2) 

where,  is ith observed value,  is the ith projected value, and N is the number of observations. 

Figure 4.1 Cross Validated MSE of Elastic Net for Population Change 
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Figure 4.2 Trace Plot of Coefficients by Elastic Net for Population Change 

The green dash lines in Figure 4.1 and Figure 4.2 represent the lower bound of the value 

of λ (0.0023), smaller than which no predictors was trimmed. The blue dash lines in both 

figures represent the upper bound of the value of  λ (0.0870), greater than which the MSE will 

be increased significantly, which means low accuracy on prediction performance. The value 

of λ was chosen as 0.0123 in this study with 17 variables included, and their standardized 

coefficients are plotted in Figure 4.3 and documented in Table 4.1.  

Table 4.1 Standardized Coefficients of the Variables Related to Population Change Selected 
By Elastic Net  

 3 nmuloC 2 nmuloC 1 nmuloC
Abbreviation Coefficient Abbreviation Coefficient Abbreviation Coefficient 
Population -0.8508 Pipelines -0.0280 NonFuel -0.0234 
Developed 0.7076 Roads -0.0634 NonKitchen -0.0109 
Damages -0.2646 MedValue 0.0745 NonPlumb 0.0243 
Elevation 0.0236 MedRent 0.0954 NonTele 0.0160 
Water -0.0015 OCST35 -0.0059 NonVehicle -0.3163 

NonMtg -0.0140 Under 5 0.1141 

3532272313108 4 2 1 
df

10-410-310-210-1100

Lambda

-1

-0.5

0

0.5

1

Trace Plot of coefficients fit by Elastic Net (Alpha = 0.5)
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Figure 4.3 Standardized Coefficients of the Variables Related to Population Change Selected 
By Elastic Net  

As Figure 4.3 shows, population change is highly negatively related to population, 

whereas it is highly positively related to developed land area percentage. The variable of 

property damages caused by coastal natural hazards also has a large negative effect on 

population change. Mean elevation slightly increases the possibility of population growth, 

whereas the total open water area percentage decreases it. In addition to these natural factors, 

there are 12 social and economic variables highly related with population change. They are 

combined into a single variable and termed as “utility”. Utility is defined as a combination of 

all the socio-ecological externalities that are highly related with population change, excluding 

the natural and environmental externalities. Utility is defined as positively correlated with 

population change. In other words, positive utility will trigger population growth, whereas 

negative utility will trigger population loss. In this study, utility was calculated using a linear 

function of the 12 social and economic variables and their coefficients (column 2 and column3 
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in Table 4.1) derived from the Elastic Net model, and the calculation of Utilityij (the utility for 

spatial unit ij) is shown in Equation 4.3: 

Utilityij	 ൌ	 ‐0.028∙stdሺPipelinesijሻ	 ‐	 0.0634∙stdሺRoadsijሻ	 	
0.0745∙stdሺMedValueijሻ	 	 0.0945∙stdሺMedRentijሻ	 ‐	
0.0059∙stdሺOCST35ijሻ	 ‐	 0.0140∙stdሺNonMtgijሻ	 ‐	
0.0234∙stdሺNonFuelijሻ	 ‐	 0.0109stdሺNonKitchenijሻ	 	
0.0243∙stdሺNonPlumbijሻ	 	 0.0160∙stdሺNonTeleijሻ	 ‐	
0.3163∙stdሺNonVehicleijሻ		0.1141∙stdሺUnder5ijሻ 

(4.3) 

where the acronym of a variable (Column 2 and 3 in Table 4.1) with subscript ij represents its 

value for spatial unit ij, and the function std() means the standardization function, and the detail 

calculation of the standardized value of an input variable x in shown in Equation 4.4: 
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where ݔ is the value of variable x for spatial unit ij, and ݔ is the mean value of variable x of 

all the spatial units.  

In the second step, the goal was to select the variables that contribute the most to the 

change of developed land area percentage. The change of developed land area percentage was 

input as the dependent variable. Population, development land area percentage, the 

environmental variables (property damages, mean elevation, open water area, and subsidence 

rate), and utility (not the social and economic factors by themselves) were input as independent 

variables. The results are shown in Figure 4.4, and Figure 4.5.  
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Figure 4.4 Cross Validated MSE of Elastic Net for Developed Land Area Percentage Change 

Figure 4.5 Trace Plot of Coefficients by Elastic Net for Developed Land Area Percentage 
Change 

For the Elastic Net of the developed land area percentage, the lower bound of λ was 

found to be 0.0008, whereas the upper bound was 0.3589, and the final value was chosen as 

0.0422 with four variables selected. The standardized coefficients of the selected variables are 

shown in Figure 4.6 and Table 4.2.  

10-410-310-210-1100

Lambda

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Cross-validated MSE of Elastic Net fit
Alpha = 0.5

7654321
df

10-410-310-210-1

Lambda

-0.8

-0.6

-0.4

-0.2

0

0.2

Trace Plot of coefficients fit by Elastic Net (Alpha = 0.5)
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Figure 4.6 Standardized Coefficients of the Variables Related to Developed Land Area Change 
Selected By Elastic Net  

Table 4.2 Standardized Coefficients of the Variables Related to Developed Land Area Change 
Selected By Elastic Net 

Abbreviation Population Developed Water Utility 
Coefficient -0.1324 0.4955 -0.0243 0.8706

As shown in Figure 4.6, developed land area percentage and utility are the major 

predictors in this step, and they are positively related with the developed land area percentage 

change. On the other hand, high population and large open water area percentage reduce the 

tendency of developed land area growth.  

In the third step, the goal was to find out what makes the utility change. Utility change 

was input as the dependent variable in this step. Population, developed land area percentage, 

utility value, and the environmental variables (same ones as in the second step) were input as 

independent variables. The results from the Elastic Net analysis in this step are shown in Figure 

4.7 and Figure 4.8. 
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Figure 4.7 Cross Validated MSE of Elastic Net for Utility Change 

Figure 4.8 Trace Plot of Coefficients by Elastic Net for Utility Change 

The lower bound was found to be 4.06e-05, and the upper bound was 0.2117. The final 

value was chosen as 0.0273 with five predictors selected. The standardized coefficients of the 

selected variables are shown in Figure 4.9.  
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Figure 4.9 Standardized Coefficients of the Variables Related to Utility Change Selected By 
Elastic Net  

Table 4.3 Standardized Coefficients of the Variables Related to Utility Change Selected By 
Elastic Net 

Abbreviation Population Damages Elevation Subsidence Utility 
Coefficient 0.0227 0.0453 0.0916 0.0652 -0.6888 

From the results shown in Figure 4.9 and Table 4.3, population was found to have a 

small positive effect on increasing utility.  Increases in environment disturbances (property 

damages and subsidence rate) seemed to increase utility, and so did mean elevation. However 

utility was found to have an extremely high tendency of decreasing itself. In other words, the 

higher the utility, the lower the utility growth.  

4.2 Coupled System Dynamics 

System dynamics modeling is an approach to discover the nonlinear behavior of 

complex systems over time using stock variables and flows (the changes of the stock variables). 

It is “a computer-aided approach to theory building, policy analysis, and strategic decision 

support emerging from an endogenous point of view” (Richardson, 2008). The field was 
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developed initially from the work of Jay W. Forrester (1961) in industry dynamics. After 

decades it has been extended to many dynamic problems arising in complex social, managerial, 

economic, and ecological systems, and literally any dynamic systems characterized by 

interdependence, mutual interaction, information feedback, and circular causality. System 

dynamics modeling uses stocks and flows to quantitatively analyze the feedback loops. Stocks 

are the variables that accumulate or deplete over time, whereas flows are the changing rates of 

these stocks. The establishment of a system dynamics model includes a graphic diagram 

corresponding to the structure of feedback loops and a set of calibrated parameters. 

Mathematically, the basic structure of a formal system dynamics model is a set of coupled, 

nonlinear, first-order differential (or integral) equations. 

This section describe the procedure of building the system dynamics as shown in Figure 

4.10.  

Figure 4.10 The Coupled System Dynamics Diagram  
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In this study, difference equations were used for updating the values of the variables 

over time. All the spatial units use the same set of difference equations for their system 

dynamics but with their own initial values. The description of all the parameters in the 

equations are in Table 4.4. The description of all the variables in the equations denoted by their 

acronyms are in Table 4.5.  

Table 4.4 Symbols, Units and Definitions for the Coefficients of the Equations in the Spatial 
Dynamic Model 

Symbol Unit Definition Equation Calibration 

a1 1/dollar Coefficient of utility change dependency on damages 4.5; 5.1 Elastic Net 

b1 1/m 
Coefficient of utility change dependency on 
elevation 

4.5; 5.1 Elastic Net 

c1 year/m 
Coefficient of utility change dependency on 
subsidence 

4.5; 5.1 Elastic Net 

d1 - Coefficient of utility change dependency on utility 4.5; 5.1 Elastic Net 

f1 1/number 
Coefficient of utility change dependency on 
population 

4.5; 5.1 Elastic Net 

d2 - 
Coefficient of developed change dependency on 
utility 

4.6; 5.2 Elastic Net 

e2 - 
Coefficient of developed change dependency on 
developed 

4.6; 5.2 Elastic Net 

f2 1/number 
Coefficient of developed change dependency on 
population 

4.6; 5.2 Elastic Net 

g2 - 
Coefficient of developed change dependency on 
water 

4.6; 5.2 Elastic Net 

a3 number/dollar 
Coefficient of population change dependency on 
damages 

4.7; 5.3 Elastic Net 

b3 number/meter 
Coefficient of population change dependency on 
elevation 

4.7; 5.3 Elastic Net 

d3 number 
Coefficient of population change dependency on 
utility 

4.7; 5.3 Elastic Net 

e3 number 
Coefficient of population change dependency on 
developed 

4.7; 5.3 Elastic Net 

f3 - 
Coefficient of population change dependency on 
population 

4.7; 5.3 Elastic Net 

g3 number 
Coefficient of population change dependency on 
water 

4.7; 5.3 Elastic Net 
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Table 4.5 Acronyms, Types, Units, Definitions, and Updating Rules of the Variables in the 
Spatial Dynamic Model 

Acronym Type Unit Definition 
Updating 

Rule 

Population State number 
Total Population of a Spatial Unit Equation 

4.5 or 5.1 

Developed State - 
Percent of Developed Land Use Area Equation 

4.6 or 5.2 

Utility State  - 
A Combination of all the Socio-Ecological Externalities 
that Highly Related with Population Change (Equation 
4.5) 

Equation 
4.7 or 5.3 

Damages Auxiliary 
dollar/ 
year 

Average Property Damages Caused by Coastal Natural 
Hazards per Year 

Constant 

Elevation Auxiliary m Mean Elevation Constant 

Subsidence Auxiliary m/year 
Average Subsidence Rate per Year Measured by Bench 
Mark 

Constant 

Water Auxiliary - 
Percent of Open Water Land Use Area  Equation 

4.8 
Pipelines Auxiliary 1/m2 Kernel Density of Oil and Gas Pipelines Constant 

Roads Auxiliary 1/m2 Kernel Density of Traffic Roads Constant 

MedValue Auxiliary dollar Median Value of Specified Owner Occupied Units  Constant 

MedRent Auxiliary dollar Median Gross Rent of Specified Renter Occupied Units Constant 

OCST35 Auxiliary - 
Percent of Households with Owner Cost more than 35 
Percent of their Household Income  

Constant 

NonMtg Auxiliary - 
Percent of Specified Owner Occupied Units without 
Mortgage 

Constant 

NonFuel Auxiliary - 
Percent of Occupied Housing Units with No House 
Heating Fuel Used 

Constant 

NonKitchen Auxiliary - 
Percent of Occupied Housing Units  Lacking Complete 
Plumbing Facilities 

Constant 

NonPlumb Auxiliary - 
Percent of Occupied Housing Units - Lacking complete 
Kitchen Facilities 

Constant 

NonTele Auxiliary - 
Percent of  Occupied Housing Units with No Telephone 
Service 

Constant 

NonVehicle Auxiliary - 
Percent of Occupied Housing Units with None Vehicles  
Available 

Constant 

Under5 Auxiliary - Percent of Total Population under 5 Years Old Constant 

The difference equations are derived by the Elastic Net regression equations described 

in the last section (Section 4.1), with their coefficients divided by 10, since the Elastic Net was 

calibrated to project the changes of the stock variables for ten years. Thus each time step of 

running the difference equations in the model represents one year. The deference equations for 

updating the three stock variables are shown in Equation 4.5, 4.6, and 4.7. 



56 

Populationij	ሺt1ሻ	ൌ	Populationij	ሺtሻ		f3∙Populationij	ሺtሻ		e3∙Developedij	
ሺtሻ		a3∙Damagesij		b3∙Elevationij		g3∙Waterij	ሺtሻ		
d3∙Utilityij	ሺtሻ 

(4.5) 

Developedij	ሺt1ሻ	ൌ	Developedij	ሺtሻ		f2∙Populationij	ሺtሻ		e2∙Developedij	
ሺtሻ		g2∙Waterij	ሺtሻ		d2∙Utilityij	ሺtሻ 

(4.6) 

Utilityij	 ሺt1ሻ	 ൌ	 Utilityij	 ሺtሻ	 	 f1∙Populationij	 ሺtሻ	 	 a1∙Damagesij	 	 b1∙	
Elevationij		c1∙Subsidenceij		d1∙Utilityij	ሺtሻ 

(4.7) 

where subscript ij refers to the spatial unit (i, j) in row i and column j, and t denotes a certain 

time step.  

Equation 5.1, 5.2, and 5.3 mentioned in Table 4.4 and 4.5 will be introduced in Chapter 

5. The environmental variables of Damages, Subsidence and Elevation are not updated over

time during the simulation. They were not modeled in this study due to the temporal data 

availability. For the environmental variable of Water, although it was not modeled, it is updated 

with a constant rate calculated by the historical data between 2000 and 2010. The deference 

equation is shown in Equation 4.7. 

Waterij	ሺt1ሻ	ൌ	Waterij	ሺtሻ		ሺWaterij	ሺ2010ሻ	–	Waterij	ሺ2000ሻሻ/10 (4.8) 

where, subscript ij refers to the spatial unit in row i and column j, t denotes a certain time step, 

and 2000 and 2010 denote the time step at the year 2000 and the year 2010.  

The system dynamics model with these coupled difference equations was run on all of 

the spatial units for ten time steps, and the simulated results were compared with the real data 

of 2010 (Figure 4.11 and Figure 4.12). The initialization of the system dynamics used the real 

data of 2000. The initialization of utility used Equation 4.3. Three constraints were added to 

the simulation: (1) if the population of a spatial unit is below zero, then it cannot receive 

negative flows to its population in the next time step, (2) if the developed area percentage of a 

spatial unit is over 100%, then it cannot receive positive flows to its developed area percentage 
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in the next time step. (3) Since from the historical data, by which the model was calibrated, 

there was no developed area decreases, it was assumed that the developed area percentage 

cannot have negative flows. If a negative flow is projected by the difference functions, then it 

is set to zero. The prediction accuracies of using the Elastic Net regression function directly 

are also shown in Figure 4.13 and Figure 4.14 for comparison.  

Figure 4.11 Comparison between the Predicted and the Real Population (Standardized) in 
2010 by Spatial Units (System Dynamics) 

Figure 4.12 Comparison between the Predicted and the Real Developed Land Area Percentage 
(Standardized) in 2010 by Spatial Units (System Dynamics) 
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Figure 4.13 Comparison between the Predicted and the Real Population (Standardized) in 2010 
by Spatial Units (Elastic Net) 

Figure 4.14 Comparison between the Predicted and the Real Developed Land Area Percentage 
(Standardized) in 2010 by Spatial Units (Elastic Net) 

The mean squared error (MSE) measurement (Equation 4.2) was used to indicate the 

prediction accuracy. Calculated from the data in Figure 4.11, Figure 4.12, Figure 4.13 and 

Figure 4.14, the MSEs for using Elastic Net directly to predict population and development 

land area percentage was 0.1350 and 0.0622 respectively. The MSEs for using the system 

dynamics model built by the functions derived by the Elastic Net was 0.1369 and 0.0615 for 
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population and development land area percentage, respectively. By comparing the MSEs, it 

was found that the prediction accuracies of the system dynamics model determined by the 

Elastic Net was maintained. In the meantime, the linear prediction functions from the Elastic 

Net were transformed to the non-linearly coupled feedback loops in the system dynamics 

model. Although the Elastic Net Model by itself has the ability to predict, but if directly using 

the linear prediction functions from it to predict, the increasing and decreasing trends of the 

variables to be predicted will never change, since the Elastic Net functions are never updated 

and always use the initial values of the predictors to guide the future change. By using the 

system dynamics, the prediction rules are still kept and the perdition accuracy is maintained. 

Most importantly, since the prediction functions are updated by the instant values of the 

predictor variables at each time step, the existence of the emergence resulting from the coupled 

dynamics can be tested in the future simulation.  
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CHAPTER 5 : SPATIAL DANAMIC MODEL AND GENETIC ALGORITHM 

This chapter describes the development of the spatial dynamic model to include the 

neighborhood effects. The neighborhood effects rules were derived from the rules extracted 

from Chapter 4, and reflect the autonomy, the reactivity, and the interaction ability. The 

autonomy of the spatial units were reflected by the difference equations’ dependencies on the 

spatial units’ attributes. The reactivity of the spatial units were reflected by the difference 

equations’ dependencies on the environmental variables. The major difference between the 

spatial dynamic model of Chapter 5 and Chapter 4 is that the spatial units have interactions 

with each other in Chapter 5, and new neighborhood effects terms were added to their 

difference equations. Genetic Algorithms were used to calibrate the coefficients in these terms. 

Monte Carlo simulation with simple random sampling method was conducted for the 

uncertainty analysis. 

5.1 Spatial Dynamic Modeling 

In this model, the neighborhood is defined as the Moore neighborhood (the eight 

contiguous neighbors). Three neighborhood effects terms were added to Equation 4.5, 4.6, and 

4.7, as shown in Equation 5.1, 5.2, and 5.3: 

Populationij	 ሺt1ሻ	 ൌ	 Populationij	 ሺtሻ	 	 ሺ1	 –	 P1ሻ	 *	 ሺf3∙Populationij	 ሺtሻ	 	
e3∙Developedij	ሺtሻ		a3∙Damagesij		b3∙Elevationij		
g3∙Waterij	 ሺtሻ	 	 d3∙Utilityij	 ሺtሻሻ	 	 P1	 *		
ቀଵ
଼
∑ ேೖሺ݊݅ݐ݈ܽݑܲ
଼
ୀଵ ݐ  1ሻ െ  ሻቁݐ	ேೖሺ݊݅ݐ݈ܽݑܲ

(5.1) 

Developedij	ሺt1ሻ	ൌ	Developedij	ሺtሻ		ሺ1	–	P2ሻ	*		ሺf2∙Populationij	ሺtሻ		
e2∙Developedij	ሺtሻ		g2∙Waterij	ሺtሻ		d2∙Utilityij	ሺtሻሻ	

	P2	*		ቀ
ଵ

଼
∑ ேೖሺ݈݀݁݁ݒ݁ܦ
଼
ୀଵ ݐ  1ሻ െ

 ሻቁݐ	ேೖሺ݈݀݁݁ݒ݁ܦ

(5.2) 
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Utilityij	ሺt1ሻ	ൌ	Utilityij	ሺtሻ		ሺ1	–	P3ሻ	*		ሺf1∙Populationij	ሺtሻ		a1∙Damagesij	
	b1∙	Elevationij		c1∙Subsidenceij		d1∙Utilityij	ሺtሻሻ		P3	
*		ቀଵ

଼
∑ ேೖሺݕݐ݈݅݅ݐܷ
଼
ୀଵ ݐ  1ሻ െ  ሻቁݐ	ேೖሺݕݐ݈݅݅ݐܷ

(5.3) 

where subscript ij refers to a spatial unit (i, j) in row i and column j, t denotes a certain time 

step, and the description of all the parameters except for the ones in the neighborhood terms 

can be found in Table 4.4. The description of all the variables in the equations denoted by their 

acronyms can be found in Table 4.5. P1, P2, and P3 are parameters that determine neighborhood 

effects weights, P1 is the direct neighborhood impact parameter for population change, P2 is 

the direct neighborhood impact parameter for developed area percentage change, and P3 is the 

direct neighborhood impact parameter for utility change. It should be noted that P1, P2, and P3 

also have indirect neighborhood impacts on other stock variables through the system dynamics. 

Nk is the kth element of the Moore neighborhood set (N) of spatial unit (i, j), and N = {(i-1,j-1), 

(i-1, j), (i-1, j+1), (i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)}. These equations reflecting the 

interactions among the spatial units are shown in Figure 5.1 (a revision of the diagram of Figure 

4.10). 
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Figure 5.1 The Spatial Coupled Dynamics Diagram 

From Figure 5.1, the changes of the stock variables are determined by both the “flows” 

of itself and the “flows” of its neighbor spatial units. The eight Moore neighbors of a spatial 

unit are assumed to have equal neighborhood impacts on it.  

Assuming that the neighborhood impacts contribute 50% to the changes of all the three 

stock variables (P1 = 0.5, P2 = 0.5, and P3 = 0.5), a simulation was run from 2000 to 2010 using 

all the spatial units. Under this assumption, the changes of population, utility, and developed 

area percentage in a spatial unit are the means of the flows calculated by the system dynamics 

and the average flows calculated by its Moore neighbors’ system dynamics. The model 

constraints and initializations mentioned in Chapter 4 (Section 4.2) still stand in this 

simulation. The simulated results are shown in Figure 5.2 and Figure 5.3.  
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Figure 5.2 Comparison between the Predicted and the Real Population (Standardized) in 2010 
by Spatial Units (with Neighborhood Effects) 

Figure 5.3 Comparison between the Predicted and the Real Developed Land Area Percentage 
(Standardized) in 2010 by Spatial Units (with Neighborhood Effects) 

The MSE for the simulated population was 0.1417, and the MSE for the simulated 

development land area percentage was 0.0610. The MSE for the population simulated with 

neighborhood effects is higher than without neighborhood effects (Chapter 4), whereas the 

MSE for the simulated development land area percentage is lower, and the sum of them is a 

little bit higher. Thus it is noted that adding the interactions among the spatial units does not 
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make the prediction more accurate. Since the simulation was tested under the assumption that 

the percentage of the impacts from neighborhood on the changes of the three stock variables 

are all 50%, whether the prediction accuracies will be improved by tuning this percentage are 

to be tested in the following section (Section 5.2). 

5.2 Neighborhood Impacts Calibration 

The task of exploring a “bottom-up” model’s parameter space and discovering the 

impact of different parameter settings can be difficult and time-consuming. In this study, the 

spatial dynamic model’s parameter space can be participated into two subsets: the set of 

parameters controlling the internal flows, and the set of parameters determining the 

neighborhood impacts. For the first set of parameters, they were calibrated and cross-validated 

by the Elastic Net model. For the second set of parameters (P1, P2, and P3), they were all 

arbitrarily set as 0.5 in Section 5.1. Although some evolutionary algorithms such as Genetic 

Algorithms (GAs) can be used to calibrate all the parameters in order to obtain a better 

prediction performance, only the second set of parameters were calibrated in this spatial 

dynamic model. The reasons for not using GAs to calibrate the first set parameters are four-

fold: First, the parameters were already empirically estimated by the Elastic Net using the real 

data; Second, the definition of the utility was derived by the Elastic Net, and tuning the first 

set parameters will cause the linear combination of the socio-ecological variables represented 

by the utility no longer be the best predictors for population change; Third, although 

evolutionary algorithms such as GAs can reduce the computational time of running the model 

significantly in contrast with the exhaustive methods, the number of iterations required to find 

a solution in GAs remains unclear (Wright and Alajmi, 2005). Thus it is easier to test the 

convergences with fewer parameters. Last, GAs need tuning ranges of the parameters to 

identify their searching spaces for solutions, and unlike the second set of parameters which 
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have a logical tuning range (form 0 to 1), the first set of parameter do not have tuning ranges. 

Applying GAs by creating tuning ranges from the empirically identified values by other data 

mining method (such as Elastic Net in this study) is redundant and trivial. 

Thus, in order to find out the best percentage of the neighborhood impacts, the GA in 

this study was only applied to the second set of the parameters, with the fitness function defined 

as the total MSE of the prediction of the population and the developed land area percentage. 

By using this fitness function, it is assumed that the prediction accuracies of population and 

developed area percentage are of equal importance in determining the final values of the 

neighborhood impacts parameters. The tuning range of these parameters are set from zero to 

one.  If the parameter equals to zero, it indicates that there are no direct neighborhood impacts, 

and if the parameter equals to one, it means that there is no autonomy or self-control. One 

hundred iterations were generated and the results of the GA are shown in Figure 5.4.   

Figure 5.4 Genetic Algorithm Results for Calibrating the Neighborhood Impacts 

In Figure 5.4, the grey line represents the MSE of each iteration, whereas the blue line 

represents the best chromosome (feasible solution) of each generation. From the figure, the 

best solution of each generation of the GA converges quickly after the first several generations. 

After the GA calibration, the sum of MSEs drops to 0.1978. The MSE for the population 

prediction is 0.1368, and the MSE for the development land area prediction is 0.0609. From 

the best solution picked, the contribution percentage of neighborhood impacts are 0% for 
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population change (P1 = 0), 50% for development land area change (P2 = 0.5), and 0% for 

utility change (P3 = 0), which means that the best prediction accuracy was acquired when there 

was no direct neighborhood impacts for the utility change and the population change, and half 

neighborhood impacts and half autonomy for the developed land use area percentage change.  

Although the MSEs were proven to be lowered, the calibrated results from the GA, 

with P1 = 0 and P3 = 0, are not satisfying results, because the emergence resulting from 

neighborhood feedbacks is one of the major focuses in this spatial dynamic model. In order to 

test the variations of the simulated results for the future predictions by using different 

neighborhood effects settings, an independent sensitivity analysis was conducted on P1, P2 and 

P3 separately. The sensitivity analysis was conducted for the time period from 2010 to 2050, 

which is the time period used for the “short time-period” simulations in the subsequent 

Chapters. P1, P2, and P3 were incremented by 0.1 independently from 0 to 1. The total 

population and the total developed area percentage of all the spatial units (standardized values) 

were documented every ten time steps (at the year of 2020, 2030, 2040 and 2050). Each 

simulation trial only had one of neighborhood parameters varied. The simulated total 

population time series and total developed land area time series corresponding to different 

values of P1, P2 and P3 are shown in Figure 5.5. 
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Figure 5.5 Total Population and Total Developed Area Percentage of all the Spatial Units 
(Standardized Values) in the Sensitivity Analysis of P1, P2, and P3 

From the sensitivity analysis results in Figure 5.5, the total population does not have 

much variations with different P3 values, which means that adding the direct neighborhood 

effects on utility changes does not make much difference on the final results. In contrast, P1 

and P2 have higher impacts on the total population variations. The variations of the total 

population due to the changing values of P1 and P2 is increasing over time. This means that 

although P2 does not directly add neighborhood impact on population changes, its indirect 

neighborhood feedbacks creates a lot variations on the final total populations. For the total 

developed area percentage, there are not much variations with different P1 and P3 values. It is 

concluded that adding the direct neighborhood effects on population and utility does not make 

any difference on the final results of developed area percentages. On the contrary, the 

variations created by different P2 values are huge, which means that the direct neighborhood 

impact on developed area percentages cannot be ignored.  

Thus, the predictive simulations showed little variations over the direct neighborhood 

effects for population changes and utility changes. The final model was determined to base on 

the results from the GA, since these values were claimed by the GA as most accurate in 
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predicting the population and the developed area percentage together. The comparisons of the 

standardized prediction values by the final model and the standardized values of the real data 

are shown in Figure 5.9 and Figure 5.10.  

Figure 5.6 Comparison between the Predicted and the Real Population (Standardized) in 2010 
by Spatial Units (after GA Calibration) 

Figure 5.7 Comparison between the Predicted and the Real Developed Land Area Percentage 
(Standardized) in 2010 by Spatial Units (after GA Calibration) 

The real population of the study area in 2010 is shown in Figure 5.8, and the projected 

population in 2010 is shown in Figure 5.9. The real developed land area percentage and the 
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projected one by the spatial dynamic model after GA of the study area in 2010 are shown in 

Figure 5.10 and Figure 5.11 respectively.  

Figure 5.8 Real Population of the Study Area in 2010 
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Figure 5.9 Population Projected by the Spatial Dynamic Model after Genetic Algorithms 
Calibration of the Study Area in 2010 

Figure 5.10 Real Developed Land Use Area Percentage of the Study Area in 2010 
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Figure 5.11 Developed Land Use Area Percentage Projected by the Spatial Dynamic Model 
after Genetic Algorithms Calibration of the Study Area in 2010 

The MSE measurement used above reflects the fitness of the simulation results to the 

real data. It is an effective way to compare the accuracies among different modeling methods 

and parameters. However, its value range is dependent on the input data used, thus it is only 

comparable within this research. In order to offer some generally comparable accuracy 

information, confusion matrix measurement was used to indicate the prediction accuracy of 

the model from 2000 to 2010. The simulated results of the populations and the developed area 

percentages of all the spatial units were classified into five groups, as well as the real data. The 

break values in the groupings were set manually using the “Jenks Natural Break” values of the 

real datasets of 2000 as references. Confusion matrixes were calculated for the population and 

the developed area percentage of 2010 between the simulated results and the real datasets, and 

they are shown in Table 5.1 and Table 5.2. 
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Table 5.1 Confusion Matrix for Population Prediction of 2010 
Real Population

Accuracy 0-750 750-300 3000-
7500 

7500-
15000 

15000-
32000 

Simulated 
Population 

0-750 5256 70 0 0 0 98.69%

750-300 48 314 12 0 0 83.96%

3000-7500 1 25 94 3 0 76.42%

7500-15000 0 0 5 43 2 86.00%

15000-32000 0 0 0 2 15 88.24%

Total 5305 409 111 48 17 97.11%

Table 5.2 Confusion Matrix for Developed Area Percentage Prediction of 2010 
Real Developed Area Percentage 

Accuracy 0%-5% 5%-15% 15%-
40% 

40%-70% 70%-
100% 

Simulated 
Developed 

Area 
Percentage 

0%-5% 4303 82 0 0 0 98.13%

5%-15% 13 875 14 0 0 97.01% 

15%-40% 0 21 342 2 0 93.70% 

40%-70% 0 0 15 130 0 89.66% 

70%-100% 0 0 0 4 89 95.70%

Total 4316 978 371 136 89 97.43% 

The total accuracies in both of the confusion matrixes are the weighted means of the 

accuracy of each group using the number of spatial units in each group from the simulated 

results as weight. From Table 5.1 and Table 5.2, the final spatial dynamic model claims an 

accuracy above 97% in both predicting the population and the developed area percentage from 

2000 to 2010. 

5.3 Monte Carlo Uncertainty Analysis 

Monte Carlo probabilistic uncertainty analysis using simple random sampling (SRS), 

was applied to the spatial dynamic mode in this study to examine the propagation of uncertainty 

errors and identify the most important contributors to uncertainty (Doubilet et al., 1985). The 

uncertainty analysis was conducted on the simulation time period from 2010 to 2050, which 

corresponds to the “short time-period” animations discussed in the subsequent chapters. The 

total values of the three stock variables (population, developed area percentage and utility) 

over all the spatial units are the assessment variables of the uncertainty errors. Z-score values 
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were used for the total values of these stock variables. The endpoints recording the values of 

the assessment variables were set at the 10th, 20th, 30th, and 40th time step (every ten years untill 

the end of the simulations). The uncertainty parameters are all of the parameters listed in Table 

4.4, and the tuning ranges for these parameters were set as from 50% below their original 

values to 50% over their original values. The details of the tuning ranges for these parameters 

are in Table 5.3.  

The uniform probability distribution was used for the Monte Carlo simulation to pick 

the values for these parameters within their tuning ranges. All the parameters were varied 

independently by Monte Carlo, and 500 trials was generated. For each trial, a random draw 

was made for each parameter from its distribution to obtain the value. The values of the 

assessment variables were documented during the running of each trial at the specified time 

steps. Histograms were created for the assessment variables from all the 500 trials at all the 

specified recording endpoints. All the histograms used 50 equal-size bins, and their centers of 

the bins are plotted in Figure 5.12, Figure 5.13, and Figure 5.14. 

Table 5.3 Probability Distribution Specification for the Monte Carlo Uncertainty Analysis 
(Unstandardized Real Value) 

Parameters Original Min Max Probability Distribution

a1 2.19E-11 1.10E-11 3.29E-11 Uniform

b1 8.90E-05 4.45E-05 1.33E-04 Uniform

c1 2.86E-01 1.43E-01 4.30E-01 Uniform

d1 -6.88E-02 -1.03E-01 -3.44E-02 Uniform

f1 2.35E-07 1.18E-07 3.53E-07 Uniform

d2 5.86E+01 2.93E+01 8.79E+01 Uniform

e2 4.63E+01 2.32E+01 6.95E+01 Uniform

f2 -9.25E-04 -1.39E-03 -4.62E-04 Uniform

g2 -8.01E-01 -1.20E+00 -4.01E-01 Uniform

a3 -3.35E-07 -5.03E-07 -1.68E-07 Uniform

b3 6.01E-02 3.00E-02 9.01E-02 Uniform

d3 2.62E+02 1.31E+02 3.92E+02 Uniform

e3 2.57E+02 1.29E+02 3.86E+02 Uniform

f3 -2.31E-02 -3.46E-02 -1.15E-02 Uniform

g3 -1.92E-01 -2.88E-01 -9.61E-02 Uniform
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Figure 5.12 Bin-Centers for the Histograms of Total Population 

Figure 5.13 Bin-Centers for the Histograms of Total Developed Area Percentage 
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Figure 5.14 Bin-Centers for the Histograms of Total Utility 

From Figure 5.12, Figure 5.13, and Figure 5.14, the uncertainties of the assessments 

propagated over every decades, and the longer the simulation the larger the uncertainty errors. 

It should be noted that the probability distributions of the simulated total population and the 

simulated total developed land area percentage are one-tailed to the right. The reason for this 

phenomena is probably the constraints added in the simulation settings (mentioned in Chapter 

3). In contrast, the probability distribution of the simulated total utility is more like two tailed. 

The propagated uncertainties represented by the standard deviations of the probability 

distributions for total population and total developed land area percentage (The values are in 

the legends of Figure 5.12, 5.13, and 5.14) increased almost linearly over simulation time. For 

the total utility, the uncertainty increased dramatically from the first record endpoint to the 

second (2020 to 2030), and after that, the increasing speed was also almost linear over 

simulation time. 

 Pearson correlation confidents between the assessment variables and the parameters 

were used to reveal the approximate relative contribution of each parameter to the variance of 

each assessment. The parameters having the greatest effects are considered to be the 
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parameters with the highest correlation coefficients. The color graphs showing these 

correlation details are in Appendix B1, B2, B3, and B4. The selected parameters with the 

highest correlation coefficients with the assessment variables are summarized in Table 5.4. 

Table 5.4 Pearson Correlations between the Assessment Variables and the Selected Parameters 
Assessment 

Variable 
Parameter 

Pearson Correlation Coefficient 

Year 2020 Year 2030 Year 2040 Year 2050 

Total Population 
e3 0.78 0.77 0.77 0.76

f3 0.47 0.5 0.52 0.54

Total Developed 
Area Percentage 

d2 0.41 0.36 0.32 0.3

e2 0.76 0.8 0.83 0.85

Total Utility 

f1 0.68 0.61 0.58 0.57

e3 0.52 0.56 0.57 0.57

f3 0.32 0.37 0.39 0.4

The parameters in Table 5.4 are identified as high-sensitivity parameters, and reducing 

their variations should reduce the amount of overall uncertainty in the final results. From Table 

5.4, it is also found that the correlation coefficients between these parameters and the 

assessments do not change much over time, thus their sensitivities do not propagate over time. 

The scatter plots between these variables and the assessment variables are in Appendix B (from 

B5 to B16). 
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CHAPTER 6 : RESILIENCE AND SUSTAINABILITY ASSESSMENT 

The resilience assessment in this study utilizes the framework of the Resilience 

Inference Measurement (RIM) model, but instead of just analyzing the population changes, the 

whole simulated time series of the population were analyzed. Self-Organizing Map (SOM) was 

used to cluster the predicted population time series into unsupervised resilience groups using 

the distance measurement by the Short Time Series Distance (STSD). The sustainability of this 

study area was analyzed according to a set of sustainability criteria (goals), a hypothetically 

anticipated level of property damages caused by coastal nature hazards, and an amount of 

resources for mitigation planning. The sustainability was compared between the low resilience 

areas and the high resilience areas. The cost to maintain the low resilience areas in terms of the 

population count was also estimated.    

6.1 Resilience Assessment and Self-Organizing Map 

In terms of the relationship between resilience and sustainability of this coastal area, 

resilience is considered a short term expression and a prerequisite of sustainability, and it needs 

to be assessed with a justified methodology. The resilience assessment in this research utilizes 

the framework from the RIM model: using the population count of each spatial unit as the 

indicator of an equilibrium state, and using the population changes as the indicator to determine 

if the spatial units have the ability to stay around their equilibrium states. A detailed description 

of the RIM model can be found in a number of publications reviewed in Chapter 2 (Li, 2011; 

Lam et al., 2015 a&b; Li et al., 2015). The variable of property damages from the coastal 

natural hazards was used to indicate the outside disturbances. However, for the indicator of the 

“recovery” dimension, instead of only using the population changes between the start date and 

end date as in the RIM model, the whole simulated time series of population were analyzed. 
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Self-Organizing Map (SOM) was used instead of K-means (the clustering method used in the 

RIM model) to put the spatial units into unsupervised resilience groups. The central time series 

of each group was analyzed to determine its resilience capacity. 

6.1.1 Self-Organizing Map Clustering 

The K-means algorithm used in the RIM model is one of the most widely used 

clustering techniques in solving Geographic Information Sciences (GISc) problems. However, 

the initialization procedure that ultimately determines which part of the solution space will be 

searched is one of the most important issues in the correct use of K-means. SOM as a substitute 

for K-means clustering was used in this study. Bação (2005) analyzed the performance of the 

SOM and K-means in the clustering problems of four different selected datasets (two real-

world datasets and two synthetic datasets). The two real-world datasets were the well-known 

iris dataset (Fisher, 1936) and sonar dataset (Sejnowski and Gorman, 1988).  In his study, the 

overall performances of SOM and K-means were compared by the criteria of the average 

quadratic error, standard deviation, average classification error, and average structural error on 

over 100 independent initializations. His conclusion was that the SOM is less prone to be 

limited in local optima than the K-means, and is more robust. 

The basic idea of a SOM is to map the data patterns onto an n-dimensional grid of 

neurons or units (n is usually 1-dimension or 2-dimension to allow easy visualization). That 

grid space is known as the output space, as opposed to the input space where the data are 

originally in. Topological relations are preserved in this mapping. Patterns that are close in the 

input space will be mapped to units that are close in the output space, and vice-versa. A 

neighborhood function of distance decay is defined (in the output space) for the interactions 

between different units. During training, the radius of this function will usually decrease, so 

that each unit will become more isolated from the effects of its faraway neighbors. Many 

implementations of SOM decrease this radius to 1, which means that even in the final stages 

of training, each unit will at least be affected by its nearest neighbors, while a few 
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implementations allow this parameter to decrease to zero. It should be noted that the SOM and 

the K-means algorithms are basically identical when the radius of the neighborhood function 

in the SOM equals zero (Bodt et al., 1997). SOMs can be used in many different ways, 

including the clustering tasks (Bação et al., 2005). In the clustering task of this study, each 

SOM unit is assumed as a cluster center, and thus a k-unit SOM will perform a task similar to 

a K-means.  

6.1.2 Self-Organizing Map Results 

Simulation using the final spatial dynamic model calibrated by GA in Chapter 5 was 

run from the year 2010 to the year 2050 using the real data of the year 2010 as the initial 

conditions. In this simulation, the assumption was that all the environmental factors remain the 

same as the historical data from the year 2000 to the year 2010, including the open water area 

growth rate, yearly subsidence rate, mean elevation, and the yearly property damages from 

coastal hazards. The projected population time series were then input into the SOM. It should 

be noted that for the clustering task of time series, a proper measurement of the distance 

between time series should be selected. In order to focus on the closeness of the shapes of the 

time series, “Short Time Series Distance” (STS) measurement was used in this study. Möller 

et al. (2003) proposed the use of STS distance measurement as the sum of the squared 

differences of the slopes in the two time series being compared. Mathematically, the STS 

distance between two time series is defined as Equation 6.1: 

݀ௌ்ௌ ൌ ඩሺ
ାଵݔ െ ݔ
ାଵݐ െ ݐ

െ
ାଵݒ െ ݒ
ାଵݐ െ ݐ

ሻଶ


ୀଵ

 (6.1) 

where x and v denote the two time series, tk is the time point for data point xk and vk, and p is 

the total number of time steps. To remove the effect of different magnitudes of the time series, 
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z score standardization of the time series was used in this study. Only the time series of the 

urban areas were analyzed, which are defined by the city boundaries of 2010 acquired from 

the U.S Census Bureau (totally 901 spatial units), because the rest of the areas had very low 

populations. Four resilience groups were chosen according to the RIM model, and the 

clustering results of the SOM are shown in the following figures (Figure 6.1, Figure 6.2, and 

Figure 6.3). 

Figure 6.1 Neighbor Weight Distances of the Neurons in the Self-Organizing Map  

Figure 6.2 Number of the Spatial Units belonged to Each Neuron 
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Figure 6.3 Weight Positions of the Spatial Units and the Four Neurons in the Output Space of 
the Self-Organizing Map 

Figure 6.1 shows the neighbor weight distances among the four neurons. The four grey 

hexagons represent the neurons, and the red lines between each two neighboring neurons 

represent their closeness. Each red line has its background filled by a color with certain 

darkness. The darker the color is, the larger the distance, and the lighter the color the smaller 

the distance. Figure 6.2 shows how many spatial units each neuron consists of. Figure 6.3 maps 

the SOM weight positions of the 901 urban spatial units as well as the positions of the four 

neurons in the output space. Each neuron represents a cluster center. The closeness of the 

spatial units to their cluster centers in the output space are shown. In order to analyze the 

resilience, the central time series was extracted from the clusters, and the results are shown in 

Figure 6.4.   
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Figure 6.4 The Central Time Series for the Four Neurons (Clusters) 

As shown in Figure 6.4, the populations of cluster 1 and cluster 2 are increasing over 

time throughout the whole simulation, whereas the populations of cluster 3 and cluster 4 are 

continuously decreasing, though their decreasing speed slows down in the later time steps of 

the simulation. The spatial units belonged to the four groups are mapped in Figure 6.5.  

Four resilience states (usurper, resistant, recovering, and susceptible) used in the RIM 

model were used to name the four groups according to their central population changes time 

series. Group 1 (the usurper group), has the largest population growth speed. Group 2 (the 

resistant group), is very similar and quite closed to Group 1 (in the SOM output space), with 

its initial average population and its average population growing speed being lower than group 

1. Most of the spatial units in this group are at the peripheral areas around the main city areas,

and they also have smaller number of people. Group 3 (the recovering group), has a high initial 

population and a high population decreasing speed. Group 4 (the susceptible group), is like an 

extreme version of group 3, and has the highest initial population but also the highest 

decreasing speed. Spatial units in group 3 and group 4 are mostly located in the New Orleans 

area and the downtown area in Northern Baton Rouge.  
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Figure 6.5 The Resilience Groups for all the Spatial Units in the City Areas of the Study Area 

6.2 Sustainability Analysis 

In this study, the sustainability of a region is considered a long term response of the 

resilience capacity in this study, and is assessed according to different specific criteria (goals). 

The sustainability criterion of a spatial unit is whether this spatial unit is able to maintain a 

certain percentage of its initial population (the sustainability goal) after several decades under 

exposure to coastal natural hazards. For example, if the sustainability goal is to maintain 80% 

of the initial population, then all the spatial units in the usurper and resistant groups are 

considered sustainable, since all of them not only are able to maintain this percentage of their 

initial population, but also are projected to have their populations increased in future years. 

6.2.1 Sustainability of the Low-Resilience Areas 

The susceptible and recovering spatial units are identified as the low-resilience spatial 

units. For these low-resilience spatial units, their final projected populations of the year 2050 

are about 59% of their initial populations on average. Thus if the sustainability goal is to 

maintain a percentage lower than 59% of their initial populations by the year 2050, these spatial 
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units are sustainable. However, if the sustainability goal is to maintain a percentage more than 

59% of their initial population, these spatial units are not sustainable. It should be noted that 

most of the low-resilience spatial units are located in the central urban areas of New Orleans 

(Figure 6.5), and these low resilience areas typically have much higher property damages, and 

much lower utility than others (Figure 6.6 and Figure 6.7).  

Figure 6.6 The Property Damages by Coastal Natural Hazards (Dollars) of the Spatial Units in 
the City Areas of the Study Area 
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Figure 6.7 The Utility of the Spatial Units in the City Areas of the Study Area 

As mentioned above, the simulation from which the resilience clustering results were 

extracted was run under the assumption that all the environmental factors are the same as the 

historical data from 2000 to 2010 (especially the property damages), thus the above “non-

sustainable” conclusion can only be made under the condition that such assumption stands. In 

other words, these areas are not competent for a sustainability goal of maintaining a percentage 

higher than 59% of their initial populations, assuming that they keep suffering at least the same 

level of coastal natural hazards as they did from 2000 to 2010. The objectives in the next two 

sub-sections are to find out: first, under which coastal hazards exposure scenarios that these 

spatial units will become sustainable; second, under what circumstances that these areas are 

mitigatable, and what is the cost of the mitigation. Here, mitigation means helping the 

population maintain the sustainability goal by using expenses.  
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6.2.1.1 Scenarios of Exposures 

To test the response of the low-resilience spatial units to different hypothesized 

amounts of property damages, a shrinkage ratio θ is defined in Equation 6.2. For each spatial 

unit, the deviation of its yearly damages from the mean in the future simulation will be the 

deviation of its yearly damages from the mean in the real data from year 2000 to 2010 

multiplied by θ. 

ߠ ൌ ሺݑ െ തሻݑ ሺݒ െ ⁄ሻݒ̅  (6.2) 

where, ui denotes the yearly damages used in the predicting simulation for spatial unit i, ݑത is 

the mean of ui, vi denotes the real historical yearly damages spatial unit i suffered from the year 

2000 to the year 2010, and ̅ݒ is the mean of vi. All the simulations are under the assumption 

that the mean yearly damages of all the spatial units in the simulation equal to their mean yearly 

damages of the historical data from 2000 to 2010 (ݑത ൌ  For all the hypothesized hazards .(ݒ̅

scenarios created in this way, it is also assumed that the property damages distribution is the 

same as the historical data, which means that the spatial units that were highly exposed to 

property damages will still have high property damages in the simulation, and vice versa. When 

θ equals 1, the yearly damages for each spatial unit used in the simulation exactly equals their 

historical yearly damages. When θ is greater than 1, the yearly damages for each spatial unit 

used in the simulation is more deviated from the mean than the real historical records. For the 

low-resilience spatial units, this means that they suffer more damages. When θ is smaller than 

1, the yearly damages for each spatial unit used in the simulation is closer to the mean than the 

real historical records. For the low-resilience spatial units, this means that they suffer less 

damages. At an extreme situation when θ equals 0, the yearly damages for all the spatial units 

used in the simulation are the same and equals their mean. Several simulations with θ values 

ranged from 0 to 3 were tested, and the average populations of all the low resilience spatial 

units are monitored and documented at the ends of the simulations (Figure 6.8).  
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Figure 6.8 Average Population of the Low-Resilience Spatial Units Simulated with Different 
θ Values 

A monotonous and almost liner relationship was found between the θ value and the 

final average population, and the higher the θ value, the lower the final average population. 

Thus if the θ value is smaller than one, these susceptible spatial units are able to achieve the 

sustainability goal with a higher future population projected.  

6.2.1.2 Mitigations 

Since the unpredictable coastal hazards have especially high possibility of occurrence 

in this vulnerable coastal area, mitigation plans are of extreme importance in this study.  Here, 

mitigation refers to any measures that can reduce the damages from coastal hazards. To test 

the effects of different budgets of mitigation plans, it is assumed that each dollar in the 

mitigation expenses has the same power to increase the population as the power of each dollar 

in the property damages to decrease the population. For example, considering a spatial unit 

having a property damage of m dollars and a mitigation expense of n dollars, the projected 

population is p1 when m equals 0 and n equals 0, the simulated population is p2 when m equals 

c (a certain amount of money) and n equals 0, and the simulated population is p3 when m equals 
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0 and n equals c, the following set of equations is established according to the above 

assumption. 

൝
ଵ  ଶ
ଷ  ଵ

ଵ െ ଶ ൌ ଷ െ ଵ

(6.3) 

Several simulations with different amounts of mitigation expenses were tested. Figure 6.9 

shows the average populations of the low-resilience spatial units at the end of the simulations. 

Figure 6.9 Average Population of the Low-Resilience Spatial Units Simulated with Different 
Mitigation Expenses 

Another monotonous and almost liner relationship was found between the mitigation 

expenses and the final average population. The higher the mitigation expenses, the higher the 

final average population. These tests are under the hazards scenario with θ set to 1, which 

means the yearly damages in the simulation equals the historical records. In order to find out 

what the average projected population will be under different combinations of hazards 

scenarios (θ values) and mitigation expenses, a multilinear regression inspired by the two linear 

and monotonous relationships found above was built with the average projected population of 

the low-resilience spatial units as dependent variable, and θ and mitigation expenditures as 
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independent variables (predictors) using the data points from Figure 6.8 and Figure 6.9, and 

the results are shown in Table 6.1.  

Table 6.1 Multi-Linear Regression Results for the Average Population of the Low-Resilience 
Spatial Units (on θ and Mitigation Expenses) 

Estimated Coefficients 
Estimate SE tStat pValue 

Intercept 10124 64.954 155.87 1.1751e-22
θ -1791.2 53.739 -33.331 5.6172e-14
Mitigation Expense 6.0834 0.5099 11.93 2.2405e-08 
Number of observations: 16, Error degrees of freedom: 13 
Root Mean Squared Error: 105 
R-squared: 0.99,  Adjusted R-Squared 0.988 
F-statistic vs. constant model: 644, p-value = 1e-13 

Table 6.1 shows that the data points fit the multi-linear regression model quite well 

with an adjusted R-squared value nearly equaled one. This linear regression model offers the 

foundation to evaluate the sustainability of the low-resilience spatial units. For example, if the 

sustainability criterion is to maintain an average population of 8000 people (around 63% of the 

average of the initial populations of the low-resilience spatial units) from 2010 to 2050 and the 

mitigation budget is 150 million every 10 year, then the sustainability goal, the mitigation 

budget, and the average simulated population can all be represented by a 3-dimensional plane, 

respectively, as shown in Figure 6.10. 

In Figure 6.10, the plane of the sustainability goal and the plane of the simulated 

population separate the whole coordinate system into three spaces: the sustainable space, the 

mitigatable space, and the tipping space. In the sustainable space, the projected population is 

always higher than the sustainability goal, which means even without any mitigation efforts 

and planning, the low-resilience spatial units are still sustainable. In the mitigatable space, the 

projected population can either be higher than the sustainability goal (the upper triangular 

cube), or be lower than the sustainability goal (the lower triangular cube). In this space, the 

sustainability of these spatial units is determined by the mitigation cost line. If the actual cost 

is above this line, these spatial units are sustainable (the upper space), whereas if the actual 

cost is below this line (the lower space), these spatial units are not sustainable. In the tipping 
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space, the projected population is always below the sustainability goal, which means under the 

given mitigation budget, these spatial units will never be sustainable 

Figure 6.10 Sustainability Analysis of the Low-Resilience Spatial Units with Mitigation 
Budget Set to 150 Million Dollars per 10 Year and Sustainability Goal Set to 8000 People 

6.2.2 Sustainability of the High-Resilience Areas 

The spatial units in the usurper and the resistant groups are identified as high resilience 

areas. For these areas, population growths with different rates have been observed. Several 

simulations were run in the same way to test the response of the final average population of 

these spatial units to different θ values (Figure 6.11) and different mitigation expenditures 

(Figure 6.12).   
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Figure 6.11 Average Population of the High-Resilience Spatial Units Simulated with Different 
θ Values 

Figure 6.12 Average Population of the High-Resilience Spatial Units Simulated with Different 
Mitigation Expenses 

A multi-linear regression model was also built by using the simulation results from the 

two figures above to find out what is the average projected population under different 

combinations of hazards scenarios (θ values) and mitigation expenses, and the results are 

shown in Table 6.2. 
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Table 6.2 Multi-Linear Regression Results for the Average Population of the High Resilience 
Spatial Units (on θ and Mitigation Expenses) 

Estimated Coefficients 
Estimate SE tStat pValue

Intercept 2306.1 21.54 107.06 1.5458e-20
θ -175.52 17.821 -9.8489 2.1462e-07

Mitigation Expense 7.2788 0.1691 43.045 2.0788e-15 
Number of observations: 16, Error degrees of freedom: 13 
Root Mean Squared Error: 34.7 
R-squared: 0.993,  Adjusted R-Squared 0.992 
F-statistic vs. constant model: 993, p-value = 6.08e-15 

Table 6.2 shows that the multi-linear model is well fitted with an adjusted R-squared 

very closed to one. A sustainability analysis of the high-resilience spatial units was conducted 

in the same manner as the one conducted for the low-resilience spatial units. A sustainability 

goal was set to maintain a population of 1,500 people (approximately the average of the initial 

population of these high-resilience spatial units in 2010). The mitigation budget was set to 150 

million dollars per decade (the same budget as the low-resilience spatial units). Figure 6.13 

was created by plotting the simulated population plane, the mitigation budget plane, and the 

sustainability goal plane together.  

From Figure 6.13, there is only one sustainable space in the three dimension coordinate 

system, in which the projected average population is always higher than the sustainability goal. 

Even with the mitigation expenses set to 0 and the θ value set to 3, the projected average 

population is still above the sustainability goal, which means that for these high-resilience 

spatial units, even without any mitigation expenditures and with three times the historical 

hazard damages, they will still get population growth. 
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Figure 6.13 Sustainability Analysis of the High Resilience Spatial Units with Mitigation 
Budget set to 150 Million Dollars and Sustainability Goal set to 1500 People 



96 

6.3 References 

Bação, F., Lobo, V., Painho, M. (2005). Self-organizing Maps as substitutes for K-means 
clustering. Lecture Notes in Computer Science Computational Science ICCS 2005, 
476-483. 

Bodt, E. D., Verleysen, M., Cottrell, M. (1997). Kohonen maps versus vector quantization for 
data analysis. ESANN, Bruges.  

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of 
Eugenics 7(2): 179-188.  

Lam, N., Reams, M., Li, K., Li, C., Mata, L. (2015a). Measuring community resilience to 
coastal hazards along the northern Gulf of Mexico. Natural Hazards Review. 

Lam, N.S.N., Qiang, Y., Arenas, H, Brito P., Liu, K.B. (2015b). Mapping and assessing coastal 
resilience in the Caribbean region. Cartography and Geographic Information Science 
42(4): 315-322.  

Li, K. (2011). Temporal changes of coastal community resilience in the Gulf of Mexico Region. 
Master’s Thesis. Baton Rouge, Louisiana: Louisiana State University.   

Li, K., Lam, N., Qiang, Y., Zou, L., Cai, H. (2015). A cyberinfrastructure for community 
resilience assessment and visualization. Cartography and Geographic Information 
Science 34-39. 

Möller-Levet, C.S., Klawonn, F., Cho, K.H., Wolkenhauer, O. (2003). Fuzzy clustering of 
short time series and unevenly distributed sampling points, Proceedings of the 5th 
International Symposium on Intelligent Data Analysis, Berlin, Germany. 

Sejnowski, T. J., Gorman, P. (1988). Learned classification of sonar targets using a massively 
parallel network. IEEE Transactions on Acoustics, Speech, and Signal Processing 
36(7): 1135 -1140. 



97 

CHAPTER 7 RELATIVE LAND PRICE ESTIMATION 

A measurement called the Relative Land Price is introduced in this Chapter from 

evaluating the relationship between the utility and the population of a spatial unit. The Relative 

Land Price is used to indicate the relative surplus value of a spatial unit in this study area due 

to its population and its utility.  

7.1 Utility and Mitigation Expenses 

The Utility as defined in Chapter 4 is a linear combination of the standardized values 

of selected social and economic variables, and the higher the utility value, the higher the 

tendency of population growth. In addition to the high hazard damages, the low-resilience 

spatial units also have lower than average utility values. In this section, the objective is to test 

whether increasing the utility of these spatial units can offer a substitute option for increasing 

the possibility to achieve the sustainability goal or not. A relationship was found between the 

increase of utility and the increase of mitigation expenses, based on which the Relative Land 

Price is defined in the following section. 

7.1.1 Low-Resilience Spatial Units 

Eight simulations ware tested with the utilities of the low-resilience spatial units 

increased, and the results are shown in Figure 7.1. As Figure 7.1 shows, the utility has the same 

ability as the mitigation expenses to increase the projected population, and is also positively 

and linearly correlated with the final average projected population. A multi-linear regression 

model was built with the average projected population as dependent variable and the mitigation 

expenditure and the increase of utility as independent variables, using the data points from 

Figure 6.9 and Figure 7.1 as sample points, and the results are shown in Table 7.1.  
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Figure 7.1 Average Population of the Low-Resilience Spatial Units Simulated with Different 
Utility Increases 

Table 7.1 Multi-Linear Regression Results for the Average Population of the Low Resilience 
Spatial Units on Utility and Mitigation Expenses 

Estimated Coefficients 
Estimate SE tStat pValue

Intercept 8194 9.0526 905.16 1.3798e-32
Utility 1030.7 4.8339 213.22 2.0032e-24

Mitigation Expense 7.3951 0.11237 65.807 8.5465e-18 
Number of observations: 16, Error degrees of freedom: 13 
Root Mean Squared Error: 18.9 
R-squared: 1.0,  Adjusted R-Squared 1.0 
F-statistic vs. constant model: 2.5e+04, p-value = 4.93e-24 

The multi-linear regression function with the coefficients as shown in Table 7.1, fits 

the data points perfectly with an adjusted R-squared value equaled 1. This function is 

represented by a plane in a 3-dimension coordinate system, as shown in Figure 7.2. In Figure 

7.2, the two horizontal planes with border marked by black dash lines in the coordinate system 

are the planes with the same population. They intersect the simulated population plane at the 

two lines marked by red solid lines. Points A, B and C are three sample points taken from the 

two lines. The plane that point B and point C belonged to has a population of 10,000 people, 

and the plane that point A belonged to has a population of 9,000 people. In order to increase 

the population by 1,000 people from point A, either that an increase of the utility value is 

needed (point A becomes point C), or that an increase of the mitigation expenses is needed (the 
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A becomes point B). Thus, for the purpose of increasing the population, the increase of the 

utility values between point A and point B is the “same” as the increase of the mitigation 

expenses between point A and point C. 

Figure 7.2 Average Population of the Low-Resilience Spatial Units for Different Utility and 
Mitigation Expenses 

7.1.2 High-Resilience Spatial Units 

Similarly, another set of eight simulations were conducted for the high-resilience 

spatial units, and the results of the average projected populations with increasing utilities are 

shown in Figure 7.3.  
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Figure 7.3 Average Population of the High-Resilience Spatial Units Simulated with Different 
Utility Increases 

A multi-linear regression model was built by using the simulation results from Figure 

6.12 and Figure 7.3, in order to find out what the average projected population will be under 

different combinations of utility values and mitigation expenses for the high-resilience spatial 

units, and the results are shown in Table 7.2. 

Table 7.2 Multi-Linear Regression Results for the Average Population of the High-Resilience 
Spatial Units on Utility and Mitigation Expenses 

Estimated Coefficients 
Estimate SE tStat pValue

Intercept 2093.6 10.514 199.11 4.8767e-24
Utility 1115.2 5.6145 198.62 5.0352e-24

Mitigation Expense 7.6281 0.13052 58.443 3.9782e-17 
Number of observations: 16, Error degrees of freedom: 13 
Root Mean Squared Error: 22 
R-squared: 1.0,  Adjusted R-Squared 1.0 
F-statistic vs. constant model: 2.19e+04, p-value = 1.16e-23 

The multi-linear equation built from the above table is plotted into a 3-dimensin 

coordinate system as shown in Figure 7.4. 
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Figure 7.4 Average Population of the High-Resilience Spatial Units for Different Utility and 
Mitigation Expenses 

7.2 Relative Land Price 

The relative land price is defined as the relative value of a spatial unit due to its 

population and its utility among a given set of spatial units. A spatial unit with zero population 

and zero utility is assumed to have a relative land price of zero dollars. It should be noted that 

the relative land price defined here is very different from the economic definition of land price, 

in which the market value of a certain land area is decomposed into structures and land 

components, and land price is the estimated price of the land component (Davisa and 

Heathcoteb, 2007). In contrast with the “economic land price”, which focuses on the surplus 

value of a land area due to its human structures, the relative land price defined here focuses on 

the surplus value of the a land area due to its population and the correlated utility. From Section 

7.1, a relationship was found as represented by the following equation: 

݊݅ݐ݈ܽݑܲ߂ ൌ ݕݐ݈݅݅ݐܷ߂ܽ   (7.1) ݏ݁ݏ݊݁ݔܧ߂ܾ
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where a and b are the coefficients calculated by the multi-linear regression. From Equation 

7.1, the expenses e to change a spatial unit with zero population and zero utility into a spatial 

unit with a population of p and a utility of u can be calculated according to Equation 7.2: 

݁ ൌ
 െ ݑܽ
ܾ

(7.2) 

For both the low-resilience and the high-resilience spatial units, their Relative Land 

Price planes with the coefficients estimated by the multi-linear regressions are shown in Figure 

7.5. 

Figure 7.5 The Relative Land Price of the High Resilience Spatial Units and the Relative Land 
Price of the Low Resilience Spatial Units 

In Figure 7.5, the plane with the borders marked by blue lines represents the function 

for calculating the Relative Land Price for the high-resilience spatial units (short for high-

resilience plane), and the plane with the borders marked by red lines represents the function 
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for calculating the Relative Land Price for the low-resilience spatial units (short for low-

resilience plane).  

First, for a fixed value of utility (the light gray plane), the marginal relative land prices 

over population represented by the slopes of the intersection lines between the light grey plane 

and each of the resilience planes (for both the high and the low resilience spatial units), are 

almost the same between the low-resilience and the high-resilience groups.  In other words, for 

a spatial unit with a fixed utility, its marginal Relative Land Price over population does not 

quite related with its resilience capacity. This means that the economically efficiency to 

increase the population in the low-resilience areas is about the same as in the high-resilience 

areas given a fixed utility. In other words, a dollar increase of the Relative Land Price will have 

similar impacts on population growth for the low-resilience and the high-resilience areas in 

this given condition.  

Second, for a fixed value of utility and a fixed value of population, the Relative Land 

Price on the high resilience plane (point A) is higher than the Relative Land Price on the low 

resilience plane (point B). This means that for two given spatial units with the same utility and 

population, one of which is in the low-resilience group, and the other of which is in the high-

resilience group, the Relative Land Price of the one in the high-resilience group will be higher. 

In other words, the surplus value of a spatial unit due to its population and utility is higher in 

the high-resilience group. It also means that it may be more economically efficient to achieve 

the same population and utility goal in the low-resilience areas than in the high-resilience areas. 

According to the definition of the Relative Land Price, the calculation of it depends on 

the coefficients in the multi-linear regression function of expenses, utility, and population, thus 

the value of it is only comparable within the spatial units from which this function is derived. 



104 

In order to evaluate the Relative Land Price of the whole metropolitan area in this study, the 

function for the population, the utility, and the expenses need to be re-derived. Eight 

simulations were run to test the relationship between the final average population and the 

amount of mitigation expenses for all the urban spatial units, and the results are shown in 

Figure 7.6.  

Figure 7.6 Average Population of all the Spatial Units in the City Areas of the Study Area 
Simulated with Different Mitigation Expenses 

As Figure 7.6 shows, the simulated population linearly, positively correlates with the 

mitigation expenses. The relationship between the simulated population and the value of the 

utility was also tested for all the urban spatial units and the results are shown in Figure 7.7.  
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Figure 7.7 Average Population of all the Spatial Units in the City Areas of the Study Area 
Simulated with Different Utility Increases 

From Figure 7.7, the simulated population was also found to have a positively and 

linearly correlation with the utility. After running the multi-linear regression on the data points 

in Figure 7.6 and Figure 7.7, the results are shown in Table 7.3. 

Table 7.3 Multi-Linear Regression Results for the Average Population of all the Spatial Units 
in City Areas of the Study Area on Utility and Mitigation Expenses 

Estimated Coefficients 
Estimate SE tStat pValue 

Intercept 2459.3 10.38 236.93 5.0874e-25
Mitigation Expenses 7.6119  0.12885 59.077 3.4594e-17 

Utility 1112.5 5.5424 200.72 4.3924e-24
Number of observations: 16, Error degrees of freedom: 13 
Root Mean Squared Error: 21.7 
R-squared: 1.0,  Adjusted R-Squared 1.0 
F-statistic vs. constant model: 2.24e+04, p-value = 1.01e-23 

The multi-linear regression function with the coefficients as shown in Table 7.3, fits 

the data points perfectly with an adjusted R-squared value equaled 1. This function is 

represented by a plane in a 3-dimensional coordinate system, as shown in Figure 7.8, to show 

the relative land price planes for both the high-resilience spatial units and the low-resilience 

spatial units together. 
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Figure 7.8 The Relative Land Price of all the Spatial Units in the City Areas of the Study Area 

In Figure 7.8, the bottom horizontal plane is partitioned by the line L into zone A and 

zone B, and it is the plane where the Relative Land Price equals 0. If a spatial unit has a 

combination of population and utility value on line L, it means that this spatial unit has a Land 

Price equaled 0, which means that this spatial unit does not have a surplus value due to its 

population and utility. If a spatial unit has a combination of population and utility value that 

falls into area A, it means that this spatial unit has a positive Relative Land Price and reflects 

positive surplus value. Similarly, if a spatial unit has a combination of the population and the 

utility value that falls into area B, it means that it have a negative Relative Land Price and 

reflects negative surplus value.  
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CHAPTER 8 COUPLED NATURAL AND HUMAN DYNAMICS OF THE “NORTH” 
AND THE “SOUTH” 

In this Chapter, the simulation results will be compared between the “north” and the 

“south” (Lam et al., 2012; Qiang and Lam, 2015), as well as between the city area of Baton 

Rouge (the major metropolitan area in the north) and the city area of New Orleans (the major 

metropolitan area in the south) (Figure 8.1). The analysis in this Chapter is based on the results 

from the simulations using the real historical data as the scenario (i.e. with θ value equaled 

one, without changes in utility values and without mitigation expenses). 

Figure 8.1 The City Areas in the Study Area with the “North” and “South” Boundary 

8.1 Comparison of the Populations 

The average simulated population time series of the spatial units belonged to the city 

areas in the “north” and the “south” were tabulated for a short time period (from 2010 to 2050) 

and a long time period (from 2010 to 2210). Only the populations of the spatial units belonged 

to the city areas (Figure 8.1) were analyzed and compared (totally 901 spatial units), due to the 

reason that the other “rural” spatial units have very low populations. For the short time-period 
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simulation, the concern is the sustainability of the “north” and the “south” in terms of 

population. In contrast, for the long time-period simulation, the concern is the existence of the 

break points (or turning points). In other words, if the average populations of the “north” and 

the “south” region will change from decreasing to increasing or vice versa. The simulation 

results are shown in Figure 8.2 and 8.3.  

Figure 8.2 Average Simulated Population of the Low-Resilience Areas in New Orleans and 
Baton Rouge and the Whole City Areas of New Orleans and Baton Rogue from 2010 to 2050 

Figure 8.3 Average Simulated Population of the “North” City Areas and the “South” City 
Areas from 2010 to 2050 
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Figure 8.4 Average Simulated Population of the Low-Resilience Areas in New Orleans and 
Baton Rouge and the Whole City Areas of New Orleans and Baton Rogue from 2010 to 2210 

Figure 8.5 Average Simulated Population of the “North” City Areas and the “South” City 
Areas from 2010 to 2210 

From Figure 8.2 and Figure 8.3, the average population of the “north” region and its 

major metropolitan area (Baton Rouge) keeps growing, whereas the average population of the 

“south” region and its major metropolitan area (New Orleans) keeps declining in the short 

time-period simulation. Most of the low-resilience areas (only except two spatial units) for 

both the “north” and the “south” region are located in the metropolitan areas of Baton Rouge 
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and New Orleans, and their average populations are declining no matter if they are in the 

“north” or in the “south”. The low-resilience areas in the “south” have their average population 

decreasing at a much faster speed than the areas in the “north”. It should be noted that all the 

susceptible spatial units are in the “south”.  

For the long time-period simulation, although most of the low-resilience spatial units 

are located in the central metropolitan area of New Orleans, the average population of all the 

spatial units in New Orleans (Figure 8.4) does not go down all the time in the long time period 

simulation.  Break points were observed in the average population time series of both the whole 

“south” region and the New Orleans metropolitan area. For the low-resilience areas (both from 

the “north” and from the “south), the decreasing speeds of their populations drop to 0 and their 

populations even get increased slightly in the long time-period simulation. This harbors the 

idea that even though the “south” areas suffered much hazard damages and the resultant 

population decreases, the whole area may still be able to find a certain equilibrium after two 

decades. 

8.2 Comparison of the Growth of the Developed Areas  

In terms of the coupled human and natural dynamics, one of the major human impacts 

on the environment is the increase in the developed land use areas. The time series of the 

average developed land use area percentage of both the “north” and the “south” were extracted 

from both the simulations for a short time-period (Figure 8.6) and a long time-period (Figure 

8.7). Unlike the comparison of the populations, in which only the urban spatial units were 

analyzed, the comparison of the developed land use areas takes all the spatial units into 

consideration.  
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Figure 8.6 Average Simulated Developed Land Use Area Percentage of the “North” Areas 
and the “South” Areas from 2010 to 2050 

Figure 8.7 Average Simulated Developed Land Use Area Percentage of the “North” Areas 
and the “South” Areas from 2010 to 2210 

From Figure 8.6 and Figure 8.7, the “south” region has a slightly higher developed land 

use area percentage than the “north” region at the beginning of the simulation (in the year 

2010), however its developing speed is lower. In the short time-period simulation, the average 

developed land use area percentages of the “north” and the “south” region are about the same, 

with the “south” having a slightly higher initial value but surpassed by the “north” at the end 
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of the simulation. In the long time-period simulation, the developing speed of the “south’ falls 

behind the “north” a lot, and the difference is exacerbated over time. 

In evaluating the human impacts on the environment, the land use types that would be 

sacrificed because of the expansion of the developed land use areas were analyzed. Since the 

long time-period simulation is mainly for observing the break points, and a long time-

prediction generally has more uncertainty than a short time prediction, this analysis was only 

done for the short time-period simulation.  For the short time-period simulation, the spatial 

units with at least 10% of their total areas converted to the developed land areas were identified 

and mapped in Figure 8.8.  Most of these spatial units are located in the city boundaries. For 

the two major metropolitan areas (New Orleans and Baton Rouge) these spatial units tend to 

be at their peripheral city areas, whereas for the other city areas, these spatial units are more 

likely to be around their city centers. These identified spatial units were separated into two 

groups by the “north-south” boundary. The percentages of each land cover type in 2010 were 

calculated for the two groups and shown in Figure 8.9.  
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Figure 8.8 Areas with their Simulated Developed Land Percentages increased by at Least 10% 

Figure 8.9 Percentages of Land Use Types of the North and the South Areas in 2010 with their 
Developed Land Percentages increased by at Least 10% by 2050 

From Figure 8.9, for the spatial units with their developed land percentages increased 

by at least 10% by 2050, located in both the “north” and the “south”, the developed land is the 

dominant land type. This means that the urban expansion is most likely to occur in the areas 
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already having a high percentage of urban area. High percentages of wetlands and cultivated 

lands (agricultural lands) also exist in these spatial units. This harbors the idea that for both the 

“south” and the “north”, agricultural lands and wetlands are most likely to be sacrificed for 

urban growth. For these spatial units located in the “north”, they also have high percentages of 

forests and grasslands. Thus, in the “north”, the urban growth also has a high probability to 

trigger the deforestation. In the meantime, for these spatial units located in the “south”, there 

is a high percentage of open water areas. It reflects that the urban expansion of the “south” 

region is closed to open water area.  

8.3 Comparison of the Relative Land Prices 

The average Relative Land Prices were also compared between the spatial units in the 

city areas of both the “north” and the “south”. The average Relative Land Prices in the short 

time-period simulation and the long time-period simulation are shown in Figure 8.10 and 

Figure 8.11.    

Figure 8.10 Average Simulated Relative Land Price of the “North” Areas and the “South” 
Areas from 2010 to 2050 
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Figure 8.11 Average Simulated Relative Land Price of the “North” Areas and the “South” 
Areas from 2010 to 2210 

From Figure 8.10 and 8.11, for all the spatial units in the city areas (including both 

high-resilience and low-resilience spatial units), the changes of their Relative Land Prices are 

much like the changes of their populations, since population is one of the two variables in 

calculating the Relative Land Price. However in contrast with the population, the average 

Relative Land Prices of the “south” was much higher than the average of the “North” at the 

beginnings of the simulations. In the long time-period simulation, the average Relative Land 

Price of the “south” spatial units changed from the decreasing state into a steady increasing 

state. Similarly to the population growth and the developed land expansion, the Relative Land 

Price Growth of the “south” still falls behind those of the “north” in both the short and the long 

time-period simulations.  
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CHAPTER 9 : CONCLUSIONS  

This study developed a spatial dynamic model with the situated spatial units as the 

modeling unit of analysis to predict the population changes and the developed land use 

percentage changes. Updating rules for the spatial units were extracted by using the Elastic Net 

regression functions, and Genetic Algorithms were used to calibrate the parameters for the 

neighborhood effects. Based on the predicted population changes from 2010 to 2050, a 

resilience assessment model inspired by the RIM model was built by using the Self-Organizing 

Map method to classify the resiliency of the spatial units. Four groups of spatial units with 

their resilience capacities ranked from high to low (usurper, resistant, recovering, and 

susceptible) were identified. The sustainability analysis was based on the criterion that if the 

population of a spatial unit can “sustain” by maintaining a certain percentage of its initial 

population after a number of years. Three conditional spaces have been identified from the 

sustainability assessment: the tipping space, the mitigatable space, and the sustainable space. 

A Relative Land Price model was defined to indicate the relative values of the spatial units due 

to their combinations of population and utility. The projected populations, developed land 

areas, and Relative Land Prices were compared between the two groups of spatial units of the 

“north’ and the “south” for two simulation periods (2010 to 2050 and 2010 to 2210).  

9.1 Modeling Discussion 

The system dynamic model built in this study focused on uncovering the social and 

economic emergences in a vulnerable coastal area, which does not result from the existence of 

a central controller. Such emergences had already been observed from 2000 to 2010 (e.g., 

population decreased in the “south” region and population increased in the “north” region). 

The system dynamics derived in this study has been proven as an effective method to monitor 

the existence of such emergences due to its ability of keeping the values of the variables 
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updated. Some emergences were observed in the predicting simulation (e.g. the average 

population of the south will change from decreasing to increasing after about 50 years). In 

terms of the coupled natural and human dynamics in this region, this model mainly focused on 

changes of the system due to the human components. The dynamics of environmental variables 

were not modeled in the simulation, such as the elevation, subsidence rate, and the open water 

percentage change (land loss rate). However, the same modeling methodology can be used to 

uncover the dynamics of these natural variables when their driving factors have been 

empirically and scientifically identified (e.g., accretion rate, biomass diversity, land building 

process). In this research, only the developed land use area percentage is modeled. With more 

natural variables incorporated, the other types of land cover (e.g., land loss) can also be 

simulated. Adding the natural part in the model will make the model more comprehensive, and 

a better understanding of the complex coupled human and natural dynamics of this coastal area 

can be obtained.  

Elastic Net was used to extract the relations among the variables, thus the accuracy of 

Elastic Net determines the accuracy of the final spatial dynamic model. It should be noted that 

a “white-box” data mining such as Elastic Net is needed in this study, since the internal 

structure of the data mining method should be known to extract the rules for building the 

system dynamics. Elastic Net was chosen in this study due to the ease of extracting rules from 

it, especially when a linear Elastic Net is used as in this study. It should be noted that the Elastic 

Net built here used a space-for-time substitution for generating sample data points. By doing 

so it assumed that the dependency of each dependent variable on each independent variable is 

the same among all the spatial units. The model could be improved if it is without this space-

for-time substitution and the resultant assumption, but this needs more data for each spatial 

unit, which means that there should be several temporal data points for each variable in each 

spatial unit. Due to the data availability at the time when conducting this study, this assumption 

has to be made for creating the Elastic Net model. 
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The Genetic Algorithm did improve the accuracy of the model, and proved the 

existence of the neighborhood effects to some extents in the final calibrated model. In building 

a “bottom-up” model, parameters setting is one of the most important task. Exhaustively trying 

out all the possibilities of parameter combinations is unrealistic due to the extremely high 

computational time cost. Technically, any optimization algorithm can be used to conduct the 

task in this step. The Genetic Algorithm as an Evolutional Algorithm was used in this study, 

because it was found to lead to a quick convergence on tuning the parameters. However, the 

final calibrated parameters are unexpected, with no direct neighborhood effects on population 

and utility (P1 = 0 and P3 = 0). Although a sensitivity analysis was conducted to confirm this 

result, this calibration part needs to be revisited in a future research. In this study, the final 

model only has P2 equal to 0.5, which indicates a low level of feed-backs among the spatial 

units, and almost linear outputs for the subsequent analysis. Different types of neighborhood 

filters other than the Moore filter used in this study, different fitness functions as well as the 

different initializations of the GA, could be tested in the future research.  

9.2 Results Discussion 

The results of this study can be summarized into three aspects: the resilience results, 

the sustainability results, and the Relative Land Price results, all of which came from the 

simulation results through running the spatial dynamic model under different scenarios.  

The resilience assessment depends on the simulated population change. Spatial units 

identified as usurper and resistant are high resilience spatial units, whereas spatial units 

identified as recovering and susceptible are low resilience spatial units. The resilience 

assessment was only on the spatial units in the city areas of the study area (totally 901 spatial 

units). Out of the 901 spatial units, 54 were classified as low-resilience, and 847 were classified 

as high-resilience. The low-resilience spatial units were found to concentrate in the New 

Orleans metropolitan areas, and they suffered much more property damages from natural 

hazards and population loss from 2000 to 2010 than other spatial units, and their historical 
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utility values (from 2000 to 2010) were also much lower. However, it should be noted that the 

low-resilience areas had larger initial populations in contrast with other areas, which makes 

the sustainability planning of these areas more important.  

In this study, resilience is regarded as an ability to bounce back from external 

disturbance, or in other words, it reflects the largest magnitude of suffering external 

disturbance without losing the ability to bounce back. It is a short term expression and 

prerequisite of sustainability, and sustainability is considered a long term response of 

resilience. A spatial unit having a high resilience means that it has a possibility to be 

sustainable, but it does not necessarily mean that it will be sustainable. The sustainability 

assessment in this study depends on the specific sustainability goal. The sustainability goal in 

this study was set to be maintaining a certain percentage of the initial population of a spatial 

unit. The sustainability analysis in this study was to find out whether the spatial units of 

different resilience capacities will be sustainable under different hazard exposure scenarios for 

a given sustainability goal. From the results, the high-resilience spatial units will always be 

sustainable, and they have different degrees of population growths even without any mitigation 

plan based on the scenarios generated in Chapter 6. For the low-resilience spatial units, three 

sustainability conditions have been identified for different scenarios under a hypothetical 

mitigation budget: tipping space in which the simulated population will never reach the 

sustainability goal, mitigatable space in which whether the sustainability goal can be achieved 

depends on the actual mitigation cost, and the sustainable space in which the low-resilience 

spatial units will suffer less hazard damages and be sustainable.  

Relative Land Price was defined in this study to indicate the relative values of the 

spatial units. The calculation of it depends on population and utility (Chapter 7). It is noted that 

in the calculation function, Relative Land Price is positively correlated with population but 

negatively correlated with utility. This does not mean that the higher the utility the lower the 

land price. Since utility and population are correlated, a spatial unit with high utility generally 

has high population. This means that for two spatial units with the same population, the one 
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with lower utility has higher Relative Land Price and vice versa. This can be explained as that 

the spatial unit with higher utility should have had more population than the other, but if it still 

have the same population as the other, then it means that it has lower Relative Land Price. In 

terms of the relationship between resilience and Relative Land Price, two findings should be 

noted. First, it was found that for a fixed population and utility, the higher the resilience, the 

higher the Relative Land Price. Second, it was also found that for the actual utility and 

population combinations of the spatial units in the study area, the low-resilience areas have 

high Relative Land Prices mainly due to their high populations. 

9.3 “North” and “South” Discussion 

The “south” region has a similar average population as the “north” region in the year 

2010 when the projecting simulations started, as well as a slightly higher average developed 

land area percentage and average Relative Land Price. However under the scenario with 

historical data, the “south” region fell behind the “north” region in the growth rates of all the 

three aspects. In the short-term simulation (2010-2050), the three aspects were all decreasing 

at the beginning, due to their high property damages suffered from natural hazards. However, 

in the long-term simulation (2010-2210), the “south” is able to maintain at a certain 

equilibrium, with steady growth in all the three aspects. This means even if the “south” areas 

still suffer the same property damages as the period from 2000 to 2010 (it should be noted that 

there was a catastrophic Katrina in this time period which was relatively rare), the population 

of these areas will not decrease all the time. Instead, they will be able to bounce back to a 

certain population level.  



123 

9.4 References 

Gunderson, L. Holling, C.S. (2002). Panarchy: Understanding transformations in human and 
natural systems. Washington, DC: Island Press. 



124 

APPENDIX A 

Figure A1 Population Density before Areal Interpolation in 2010 

Figure A2 Population Density after Areal Interpolation in 2010 
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Figure A3 Percentage of Population under 5 Years Old before Areal Interpolation in 2000 

Figure A4 Percentage of Population under 5 Years Old after Areal Interpolation in 2000 
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Figure A5 Median Gross Rent before Areal Interpolation in 2000 

Figure A6 Median Gross Rent after Areal Interpolation in 2000 
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Figure A7 Median House Value before Areal Interpolation in 2000 

Figure A8 Median House Value after Areal Interpolation in 2000 
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APPENDIX B 

Figure B1 Correlations between the Parameters and the Sensitivity Assessment Variables after 
10-Year Simulation 

Figure B2 Correlations between the Parameters and the Sensitivity Assessment Variables after 
20-Year Simulation 
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Figure B3 Correlations between the Parameters and the Sensitivity Assessment Variables after 
30-Year Simulation 

Figure B4 Correlations between the Parameters and the Sensitivity Assessment Variables after 
40-Year Simulation 
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Figure B5 Histograms, Scatter Plots, and Correlation Coefficients for the Total Population and 
its High-Sensitivity Parameters after 10-Year Simulation (Standardized Value) 

Figure B6 Histograms, Scatter Plots, and Correlation Coefficients for the Total Population and 
its High-Sensitivity Parameters after 20-Year Simulation (Standardized Value) 
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Figure B7 Histograms, Scatter Plots, and Correlation Coefficients for the Total Population and 
its High-Sensitivity Parameters after 30-Year Simulation (Standardized Value) 

Figure B8 Histograms, Scatter Plots, and Correlation Coefficients for the Total Population and 
its High-Sensitivity Parameters after 40-Year Simulation (Standardized Value) 
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Figure B9 Histograms, Scatter Plots, and Correlation Coefficients for the Total Developed 
Land Area Percentage and its High-Sensitivity Parameters after 10-Year Simulation 
(Standardized Value) 

 
Figure B10 Histograms, Scatter Plots, and Correlation Coefficients for the Total Developed 
Land Area Percentage and its High-Sensitivity Parameters after 20-Year Simulation 
(Standardized Value) 
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Figure B11 Histograms, Scatter Plots, and Correlation Coefficients for the Total Developed 
Land Area Percentage and its High-Sensitivity Parameters after 30-Year Simulation 
(Standardized Value) 

Figure B12 Histograms, Scatter Plots, and Correlation Coefficients for the Total Developed 
Land Area Percentage and its High-Sensitivity Parameters after 40-Year Simulation 
(Standardized Value) 
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Figure B13 Histograms, Scatter Plots, and Correlation Coefficients between the Total Utility 
and its High-Sensitivity Parameters after 10-Year Simulation (Standardized Value) 

Figure B14 Histograms, Scatter Plots, and Correlation Coefficients between the Total Utility 
and its High-Sensitivity Parameters after 20-Year Simulation (Standardized Value) 
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Figure B15 Histograms, Scatter Plots, and Correlation Coefficients between the Total Utility 
and its High-Sensitivity Parameters after 30-Year Simulation (Standardized Value) 

 
Figure B16 Histograms, Scatter Plots, and Correlation Coefficients between the Total Utility 
and its High-Sensitivity Parameters after 40-Year Simulation (Standardized Value) 
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